Skip to main content

Catalytic Pyrolysis of Lignocellulosic Biomass for Production of Liquid Biofuels

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

  • 789 Accesses

Abstract

Catalytic fast pyrolysis (CFP) processes for conversion of lignocellulose biomass into liquid biofuels (bio-oil) have been extensively studying to meet increasing fuel demands and to address environmental issues. Direct use of crude bio-oil, however, is usually restricted due to its high content of oxygen. Therefore, reaction principles and mechanisms of the biomass catalytic pyrolysis need further reveal to develop improved bio-oil. This chapter presents a comprehensive review of the development of biomass CFP and bio-oil improving routes, including its catalysts, feedstocks, reaction methods and reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li R, Zhong ZP, Jin BS, Zheng AJ. Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms. Energy Fuel. 2012;26:2996–3002. https://doi.org/10.1021/ef300180r.

    Article  CAS  Google Scholar 

  2. Yanik J, Kornmayer C, Saglam M, Yüksel M. Fast pyrolysis of agricultural wastes: characterization of pyrolysis products. Fuel Process Technol. 2007;88:942–7. https://doi.org/10.1016/j.fuproc.2007.05.002.

    Article  CAS  Google Scholar 

  3. Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuel. 2004;18:590–8. https://doi.org/10.1021/ef034067u.

    Article  CAS  Google Scholar 

  4. French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol. 2010;91:25–32. https://doi.org/10.1016/j.fuproc.2009.08.011.

    Article  CAS  Google Scholar 

  5. Encinar JM, González JF, González J. Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Process Technol. 2000;68(3):209–22. https://doi.org/10.1016/S0378-3820(00)00125-9.

    Article  CAS  Google Scholar 

  6. Jiang XX, Zhong ZP, Ellis N, Wang Q. Aging and thermal stability of the mixed product of the ether-soluble fraction of bio-oil and bio-diesel. Chem Eng Technol. 2011;34(5):727–36. https://doi.org/10.1002/ceat.201000441.

    Article  CAS  Google Scholar 

  7. Zhang B, Zhong ZP, Ding K, Cao YY, Liu ZC. Catalytic upgrading of corn stalk fast pyrolysis vapors with fresh and hydrothermally treated HZSM-5 catalysts using Py-GC/MS. Ind Eng Chem Res. 2014;53(24):9979–84. https://doi.org/10.1021/ie404426x.

    Article  CAS  Google Scholar 

  8. Shao SS, Zhang HY, Xiao R, Shen DK, Zheng J. Comparison of catalytic characteristics of biomass derivates with different structures over ZSM-5. Bioenerg Res. 2013;6:1173–82. https://doi.org/10.1007/s12155-013-9303-x.

    Article  CAS  Google Scholar 

  9. Liu HL, Ma XQ, Li LJ, Hu ZF, Guo PS, Jiang YH. The catalytic pyrolysis of food waste by microwave heating. Bioresour Technol. 2014;106:45–50. https://doi.org/10.1016/j.biortech.2014.05.020.

    Article  CAS  Google Scholar 

  10. Dickerson T, Soria J. Catalytic fast pyrolysis: a review. Energies. 2013;6:514–38. https://doi.org/10.3390/en6010514.

    Article  CAS  Google Scholar 

  11. Adam J, Antonakou E, Lappas A, Stocker M, Nilsen MH, Bouzga A, Hustad JE, Oye G. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater. 2006;96:93–101. https://doi.org/10.1016/j.micromeso.2006.06.021.

    Article  CAS  Google Scholar 

  12. Imran A, Bramer EA, Seshan K, Brem G. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Process Technol. 2014;127:72–9. https://doi.org/10.1016/j.fuproc.2014.06.011.

    Article  CAS  Google Scholar 

  13. Güngör A, Önenc S, Ucar S, Yanika J. Comparison between the “one-step” and “two-step” catalytic pyrolysis of pine bark. J Anal Appl Pyrolysis. 2012;97:39–48. https://doi.org/10.1016/j.jaap.2012.06.011.

    Article  CAS  Google Scholar 

  14. Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy. 2000;25:493–513. https://doi.org/10.1016/S0140-6701(02)85315-2.

    Article  CAS  Google Scholar 

  15. Fan LL, Chen P, Zhou N, Liu SY, Zhang YN, Liu YH, Wang YP, Omar MM, Peng P, Addy M, Cheng YL, Ruan R. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresour Technol. 2018;247:851–8. https://doi.org/10.1016/s0960-8524(99)00085-1.

    Article  CAS  Google Scholar 

  16. Zhang B, Zhong ZP, Xie QL, Liu SY, Ruan R. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst. J Environ Sci. 2016;45:240–7. https://doi.org/10.1016/j.jes.2015.12.019.

    Article  CAS  Google Scholar 

  17. De Wild PJ, Den Uil H, Reith JH, Kiel JHA, Heeres HJ. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversionoption to produce value-added chemicals from lignocellulosic biomass. J Anal Appl Pyrolysis. 2009;85:124–33. https://doi.org/10.1016/j.jaap.2008.08.008.

    Article  CAS  Google Scholar 

  18. Radlein D, Piskorz J, Scott DS. Fast pyrolysis of natural polysaccharides as a potential industrial process. J Anal Appl Pyrolysis. 1991;19:41–63. https://doi.org/10.1016/0165-2370(91)80034-6.

    Article  CAS  Google Scholar 

  19. Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis. 2010;87:199–206. https://doi.org/10.1016/j.jaap.2009.12.001.

    Article  CAS  Google Scholar 

  20. Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J Anal Appl Pyrolysis. 2009;85:98–107. https://doi.org/10.1016/j.jaap.2008.10.021.

    Article  CAS  Google Scholar 

  21. Trendewicz A, Evans R, Dutta A. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy. 2015;74:15–25. https://doi.org/10.1016/j.biombioe.2015.01.001.

    Article  CAS  Google Scholar 

  22. Di Blasi C, Branca C, Galgano A. Modifications in the thermicity of the pyrolysis reactions of ZnCl2-loaded wood. Ind Eng Chem Res. 2015;54(51):12741–9. https://doi.org/10.1021/acs.iecr.5b03694.

    Article  CAS  Google Scholar 

  23. Stefanidis SD, Kalogiannis KG, Iliopoulou EF. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresour Technol. 2011;102(17):8261–7. https://doi.org/10.1016/j.biortech.2011.06.032.

    Article  CAS  Google Scholar 

  24. Lin Y, Zhang C, Zhang M. Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energ Fuels. 2011;24(10):5686–95. https://doi.org/10.1021/ef1009605.

    Article  CAS  Google Scholar 

  25. Veses A, Aznar M, Martínez I. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour Technol. 2011;162:250–8. https://doi.org/10.1016/j.biortech.2014.03.146.

    Article  CAS  Google Scholar 

  26. Torri C, Reinikainen M, Lindfors C. Investigation on catalytic pyrolysis of pine sawdust: catalyst screening by Py-GC-MIP-AED. J Anal Appl Pyrolysis. 2010;88(1):7–13. https://doi.org/10.1016/j.jaap.2010.02.005.

    Article  CAS  Google Scholar 

  27. Imran A, Bramer E, Seshan K, Brem G. Catalytic flash pyrolysis of biomass using different types of zeolite and online vapor fractionation. Energies. 2016;9(3):187. https://doi.org/10.3390/en9030187.

    Article  CAS  Google Scholar 

  28. Wang SR, Dai GX, Yang HP, Luo ZY. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  29. Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen. 2012;423:154–61. https://doi.org/10.1016/j.apcata.2012.02.030.

    Article  CAS  Google Scholar 

  30. Yang HP, Coolman R, Karanjkar P, Wang HY, Dornath P, Chen HP, Fan W, Conner WC, Mountziaris TJ, Huber G. The effects of contact time and coking on the catalytic fast pyrolysis of cellulose. Green Chem. 2017;19:286–97. https://doi.org/10.1039/c6gc02239a.

    Article  CAS  Google Scholar 

  31. Maneffa M, Priecel P, Lopez-Sanchez JA. Biomass-derived renewable aromatics: selective routes and outlook for p-xylene commercialization. ChemSusChem. 2016;9:2736–48. https://doi.org/10.1002/cssc.201600605.

    Article  CAS  Google Scholar 

  32. Hassan E, Elsayed I, Eseyin A. Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene. Fuel. 2016;174:317–24. https://doi.org/10.1016/j.fuel.2016.02.031.

    Article  CAS  Google Scholar 

  33. Zhang HY, Xiao R, Huang H, Xiao G. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol. 2009;100(3):1428–34. https://doi.org/10.1016/j.biortech.2008.08.031.

    Article  CAS  Google Scholar 

  34. Zhang B, Zhong ZP, Ding K, Song ZW. Production of aromatic hydrocarbons from catalytic co-pyrolysis of biomass and high density polyethylene: analytical Py-GC/MS study. Fuel. 2015;139:622–8. https://doi.org/10.1016/j.fuel.2014.09.052.

    Article  CAS  Google Scholar 

  35. Dahl IM, Kolboe SJ. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. J Catal. 1996;161:304–9. https://doi.org/10.1006/jcat.1996.0188.

    Article  CAS  Google Scholar 

  36. Tau LM, Fort AW, Bao SQ, Davis BH. Methanol to gasoline: 14C tracer studies of the conversion of methanol/higher alcohol mixtures over ZSM-5. Fuel Process Technol. 1990;26:209–19. https://doi.org/10.1016/0378-3820(90)90006-e.

    Article  CAS  Google Scholar 

  37. Zhang B, Zhong ZP, Chen P, Ruan R. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. J Anal Appl Pyrolysis. 2017;127:246–57. https://doi.org/10.1016/j.jaap.2017.07.027.

    Article  CAS  Google Scholar 

  38. Carlson TR, Jae J, Lin YC, Tompsett GA, Huber GW. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal. 2010;270:110–24. https://doi.org/10.1016/j.jcat.2009.12.013.

    Article  CAS  Google Scholar 

  39. Zhang HY, Xiao R, Jin BS, Xiao GM, Chen R. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol. 2013;140:256–62. https://doi.org/10.1016/j.biortech.2013.04.094.

    Article  CAS  Google Scholar 

  40. Lu Q, Zhang ZF, Dong CQ, Zhu XF. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies. 2010;3:1805–20. https://doi.org/10.3390/en3111805.

    Article  CAS  Google Scholar 

  41. Ding K, He AX, Zhong DX, Fan LL, Liu SY, Wang YP, Liu YH, Chen P, Lei HW, Ruan R. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: an analytical pyrolyzer analysis. Bioresour Technol. 2018;268:1–8. https://doi.org/10.1016/j.biortech.2018.07.108.

    Article  CAS  Google Scholar 

  42. Casoni AI, Nievas ML, Moyano EL, Alvarez M, Diez A, Dennehy M, Volpe MA. Catalytic pyrolysis of cellulose using MCM-41 type catalysts. Appl Catal A Gen. 2016;514:235–40. https://doi.org/10.1016/j.apcata.2016.01.017.

    Article  CAS  Google Scholar 

  43. Zhang B, Zhong ZP, Li T, Xue ZY, Wang XJ, Ruan R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J Anal Appl Pyrolysis. 2018;130:1–7. https://doi.org/10.1016/j.jaap.2018.02.007.

    Article  CAS  Google Scholar 

  44. Carlson TR, Cheng YT, Jae J, Huber GW. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci. 2011;4:145–61. https://doi.org/10.1039/C0EE00341G1.

    Article  CAS  Google Scholar 

  45. Zhang B, Zhong ZP, Song ZW, Ding K, Chen P, Ruan R. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk. J Power Sources. 2015;300:87–94. https://doi.org/10.1016/j.jpowsour.2015.09.075.

    Article  CAS  Google Scholar 

  46. Chen NY, Degnan TF, Koenig LR. Liquid fuel from carbohydrates. Chem Tech. 1986;16(8):506–11.

    CAS  Google Scholar 

  47. Valle B, Aramburu B, Santiviago C, Bilbao J, Gayubo AG. Upgrading of bio-oil in a continuous process with dolomite catalyst. Energy Fuel. 2014;28:6419–28. https://doi.org/10.1021/ef501600f.

    Article  CAS  Google Scholar 

  48. Dorado C, Mullen CA, Boateng AA. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustain Chem Eng. 2014;2(2):301–11. https://doi.org/10.1021/sc400354g.

    Article  CAS  Google Scholar 

  49. Liu SY, Xie QL, Zhang B, Cheng YL, Liu YH, Chen P, Ruan R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol. 2016;204:164–70. https://doi.org/10.1016/j.biortech.2015.12.085.

    Article  CAS  Google Scholar 

  50. Wan S, Wang Y. A review on ex situ catalytic fast pyrolysis of biomass. Front Chem Sci Eng. 2014;8(3):280–94. https://doi.org/10.1007/s11705-014-1436-8.

    Article  CAS  Google Scholar 

  51. Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energ Convers Manag. 2015;105:338–54. https://doi.org/10.1016/j.enconman.2015.07.078.

    Article  CAS  Google Scholar 

  52. Wang S, Ru B, Lin H. Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes. Chem Res Chin Univ. 2014;30(5):848–54. https://doi.org/10.1007/s40242-014-4019-9.

    Article  CAS  Google Scholar 

  53. Park YK, Jung JS, Jae J, Hong SB, Watanabe A, Kim Y-M. Catalytic fast pyrolysis of wood plastic composite over microporous zeolites. Chem Eng J. 2019;377:119742. https://doi.org/10.1016/j.cej.2018.08.128.

    Article  CAS  Google Scholar 

  54. Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K. Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy. 2012;48:100–10. https://doi.org/10.1016/j.biombioe.2012.10.024.

    Article  CAS  Google Scholar 

  55. Duan D, Wang Y, Dai L, Ruan R, Zhao Y, Fan L, Tayier M, Liu Y. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresour Technol. 2017;241:207–13. https://doi.org/10.1016/j.biortech.2017.04.104.

    Article  CAS  Google Scholar 

  56. Zhang HY, Zheng J, Xiao R, Shen DK, Jin BS, Xiao GM, Chen R. Co-catalytic pyrolysis of biomass and waste triglyceride seed oil in a novel fluidized bed reactor to produce olefins and aromatics integrated with self-heating and catalyst regeneration processes. RSC Adv. 2013;3:5769–74. https://doi.org/10.1039/c3ra40694f.

    Article  CAS  Google Scholar 

  57. Zhang HY, Xiao R, Wang DH, Cho J, He GY, Shao SS, Zhang JB. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor: solid circulation rate and gas bypassing. Chem Eng J. 2012;181-182:685–93. https://doi.org/10.1016/j.cej.2011.12.057.

    Article  CAS  Google Scholar 

  58. Bridgwater AV. Fast pyrolysis reactors worldwide. PyNe. 2010;27(1):8–20.

    Google Scholar 

  59. Wu CZ, Yin XL, Yuan ZH. The development of bioenergy technology in China. Energy. 2010;35(11):4445–50. https://doi.org/10.1016/j.energy.2009.04.006.

    Article  CAS  Google Scholar 

  60. Epsterin N, Grace JR. Spouted and spout-flmd beds: fundamentals and applications. Cambridge: Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511777936.011.

    Book  Google Scholar 

  61. Bridgwater AV. Biomass for energy. J Sci Food Agric. 2006;86(12):1755–68. https://doi.org/10.1002/jsfa.2605.

    Article  CAS  Google Scholar 

  62. Hayes RD. Biomass pyrolysis technology and products: a Canadian viewpoint. In: Pyrolysis oils from biomass. Washington: American Chemical Society; 1988. https://doi.org/10.1021/bk-1988-0376.ch002.

    Chapter  Google Scholar 

  63. Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers Manag. 2015;105:338–54. https://doi.org/10.1016/j.enconman.2015.07.078.

    Article  CAS  Google Scholar 

  64. Li F, Choudhari MM, Paredes P. GÃķrtler instability and its control via surface suction over an axisymmetric cone fluid dynamics conference 3069; 2018.

    Google Scholar 

  65. Diebold JP, Czernik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel. 1997;11(5):1081–91. https://doi.org/10.1021/ef9700339.

    Article  CAS  Google Scholar 

  66. Zhang W, Yuan C, Xu J. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresour Technol. 2015;183:255–8. https://doi.org/10.1016/j.biortech.2015.01.113.

    Article  CAS  Google Scholar 

  67. Yu F, Deng SB, Chen P, Liu YH, Wan YQ, Olson A, Kittelson D, Ruan R. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl Biochem Biotechnol. 2007;136-140:957–70. https://doi.org/10.1007/s12010-007-9111-x.

    Article  Google Scholar 

  68. Lam SS, Liew RK, Cheng CK, Chase HA. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B Environ. 2015;176-177:601–17. https://doi.org/10.1016/j.apcatb.2015.04.014.

    Article  CAS  Google Scholar 

  69. Zhang B, Tan GW, Zhong ZP, Ruan R. Microwave-assisted catalytic fast pyrolysis of spent edible mushroom substrate for bio-oil production using surface modified zeolite catalyst. J Anal Appl Pyrolysis. 2017;123:92–8. https://doi.org/10.1016/j.jaap.2016.12.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, B., Wu, K., Zhang, J., Zhong, S., Zhang, H. (2020). Catalytic Pyrolysis of Lignocellulosic Biomass for Production of Liquid Biofuels. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_6

Download citation

Publish with us

Policies and ethics