Skip to main content

Syngas Production, Storage, Compression and Use in Gas Turbines

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Abstract

This chapter analyses syngas production through pyrolysis and gasification, its compression and its use in gas turbines. Syngas compression can be performed during or after thermal treatment processes. Important points are discussed related to syngas ignition, syngas explosion limit at high temperatures and high pressures and syngas combustion kinetics. Kinetic aspects influence ignition and final emissions which are obtained at the completion of the combustion process. The chapter is organized into four subsections, dealing with (1) innovative syngas production plants, (2) syngas compressors and compression process, (3) syngas ignition in both heterogeneous and homogeneous systems and (4) syngas combustion kinetics and experimental methods. Particular attention is given to ignition regions that affect the kinetics, namely systems that operate at temperatures higher than 1000 K can have strong ignition, whereas those operating at lower temperatures have weak ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Alessandro B, D'Amico M, Desideri U, Francesco F. The IPRP (integrated pyrolysis regenerated plant) technology: from concept to demonstration. Appl Energy. 2013;101(1):423–31. https://doi.org/10.1016/j.apenergy.2012.04.036.

    Article  Google Scholar 

  2. Zhang X, Che Q, Cui X, Wei Z, Zhang X, Chen Y, Wang X, Chen H. Application of biomass pyrolytic polygeneration by a moving bed: characteristics of products and energy efficiency analysis. Bioresour Technol. 2018;254:130–8. https://doi.org/10.1016/j.biortech.2018.01.083.

    Article  CAS  Google Scholar 

  3. Minchener AJ. Coal gasification for advanced power generation. Fuel. 2005;84(17):2222–35. https://doi.org/10.1016/j.fuel.2005.08.035.

    Article  CAS  Google Scholar 

  4. Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev. 2010;14(4):302–14. https://doi.org/10.1016/j.esd.2010.09.007.

    Article  Google Scholar 

  5. Tukiainen S. Carbofex EBC-certified biochar technology, Carbofex. 2020. https://www.carbofex.fi/. Accessed 18 Jan 2020.

  6. Carbon Terra. Das unternehmen. 2020. https://www.carbon-terra.eu/en/schottdorf-meiler/functionality. Accessed 18 Jan 2020.

  7. Gustafsson M. 2013Pyrolysis for heat production. Master thesis. 2013. http://www.diva-portal.org/smash/get/diva2:655188/FULLTEXT02.pdf. Accessed 18 Jan 2020.

  8. EliquoStulz. PYREG, Minimise the cost of your sludge disposal. 2020. https://www.eliquostulz.com/en/pyreg.html. Accessed 18 Jan 2020.

  9. Ahmad E, Jäger N, Apfelbacher A, Daschner R, Hornung A, Pant KK. Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Process Technol. 2018;171:277–86. https://doi.org/10.1016/j.fuproc.2017.11.020.

    Article  CAS  Google Scholar 

  10. 3R Agrocarbon. The 3R zero emission pyrolysis technology generates new resources and added value recovered BIO-PHOSPHATE products. 2020. https://www.3ragrocarbon.com/sites/default/files/attachments/3r_fact_sheet.pdf. Accessed 18 Jan 2020

  11. Rietveld G, van der Drift A, Grootjes AJ, van der Meijden CM, Vreugdenhil BJ. Commercialization of the ECN MILENA gasification technology, ECN report ECN-M--14-061. 2014. https://publications.tno.nl/publication/34631595/N4tX73/m14061.pdf. Accessed 18 Jan 2020.

  12. Ahrenfeldt J, Thomsen TP, Henriksen U, Clausen LR. Biomass gasification cogeneration – a review of state of the art technology and near future perspectives. Appl Therm Eng. 2013;50(2):1407–17. https://doi.org/10.1016/j.applthermaleng.2011.12.040.

    Article  CAS  Google Scholar 

  13. Hofbauer H, Rauch R, Bosch K, Koch R, Aichernig C. Biomass CHP plant güssing - a success story. 2002. https://www.semanticscholar.org/paper/Biomass-CHP-Plant-G%C3%BCssing-A-Success-Story-Hermann-Reinhard/0122da66ae2088ad3f046a150f251a4a345b8038. Accessed 18 Jan 2020.

  14. Biollaz S. The SNG technology platform in güssing, a status report of bio-SNG project. In: Poster presented at European Biofuels Technology Platform: Second Stakeholder Plenary Meeting (SPM2), 22nd of January 2009, Brussels. 2009. http://www.etipbioenergy.eu/images/Poster_BioSNG_PSI.pdf. Accessed 18 Jan 2020.

  15. Alamia A, Magnusson I, Johnsson F, Thunman H. Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union. Appl Energy. 2016;170:445–54. https://doi.org/10.1016/j.apenergy.2016.02.001.

    Article  CAS  Google Scholar 

  16. Hedenskog M. The GoBiGas project: bio-methane from forest residues – from vision to reality. Presentation at SVEBIO2015. 2015.

    Google Scholar 

  17. Alamia A, Larsson A, Breitholtz C, Thunman H. Performance of large-scale biomass gasifiers in a biorefinery, a state-of-the-art reference. Int J Energy Res. 2017;41:2001–19. https://doi.org/10.1002/er.3758.

    Article  Google Scholar 

  18. Larsson A, Hedenskog M, Thunman H. Monitoring the bed material activation in the GoBiGas-Gasifier. In: Nordic Flame days. 2015. https://www.researchgate.net/publication/283578378_Monitoring_the_Bed_Material_Activation_in_the_GoBiGas-Gasifier. Accessed 18 Jan 2020.

  19. Rauch R, Hofbauer H, Bosch K, Siefert I, Aichernig C, Voigtlaender K et al. Steam gasification of biomass at CHP plant guessing-status of the demonstration plant. In: World biomass conference; biomass for energy industry and climate protection, pp 1687–1690. 2004.

    Google Scholar 

  20. Pfeifer C, Koppatz S, Hofbauer H. Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers Biorefin. 2011;1:39–53. https://doi.org/10.1007/s13399-011-0007-1.

    Article  CAS  Google Scholar 

  21. Kotik J. Über den Einsatz von Kraft-Wärme-Kopplungsanlagen auf basis der wirbelschichtdampfvergasung fester biomasse am beispiel des biomassekraftwerks oberwart. Vienna: Vienna University of Technology; 2010.. (in German)

    Google Scholar 

  22. Suda T, Liu Z, Takafuji M, Hamada K, Tani H. Gasification of lignite coal and biomass using twin IHI Gasifier (TIGAR®). 2012. https://www.ihi.co.jp/var/ezwebin_site/storage/original/application/fae45aac0eb82bef2ca20cf8cc2cb0f0.pdf. Accessed 18 Jan 2020.

  23. Paethanom A. Twin IHI Gasifier (TIGAR®) – current status of Indonesian demonstration project and its business plan. In gasification and syngas technologies conference. Vancouver, BC. 2016. https://www.globalsyngas.org/members/2016-conference-presentations/. Accessed 18 Jan 2020.

  24. Melligan F, Auccaise R, Novotny EH, Leahy JJ, Hayes MHB, Kwapinski W. Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresour Technol. 2011;102(3):3466–70. https://doi.org/10.1016/j.biortech.2010.10.129.

    Article  CAS  Google Scholar 

  25. Mahinpey N, Murugan P, Mani T, Raina R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuel. 2009;23:2736–42. https://doi.org/10.1021/ef8010959.

    Article  CAS  Google Scholar 

  26. Fjellerup J, Gjernes E, Hansen LK. Pyrolysis and combustion of pulverized wheat straw in a pressurized entrained flow reactor. Energy Fuel. 1996;10:649–51. https://doi.org/10.1021/ef950204e.

    Article  CAS  Google Scholar 

  27. Whitty K, Backman R, Hupa M. Influence of pressure on pyrolysis of black liquor: 1. Swelling. Bioresour Technol. 2008;99:663–70. https://doi.org/10.1016/j.biortech.2006.11.065.

    Article  CAS  Google Scholar 

  28. Roberts DG, Harris DJ, Wall TF. On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity. Energy Fuel. 2003;17:887–95. https://doi.org/10.1021/ef020199w.

    Article  CAS  Google Scholar 

  29. Matsuoka K, Akiho H, Xu WC, Gupta R, Wall TF, Tomita A. The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel. 2005;84:63–9. https://doi.org/10.1016/j.fuel.2004.07.006.

    Article  CAS  Google Scholar 

  30. Vuthaluru HB. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour Technol. 2004;92:187–95. https://doi.org/10.1016/j.biortech.2003.08.008.

    Article  CAS  Google Scholar 

  31. Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity. Fuel. 2005;84:1328–34. https://doi.org/10.1016/j.fuel.2004.07.016.

    Article  CAS  Google Scholar 

  32. Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel. 2004;83(7–8):1071–8. https://doi.org/10.1016/j.fuel.2003.11.004.

    Article  CAS  Google Scholar 

  33. Blackmer®. Compressors, 04/99 CB-207. 2020. https://www.gasequipment.com/catalogs/cryogenic/pdf/Blackmer/Compressors/Comp%20Selection%20and%20Sizing.pdf. Accessed on 17 Jan 2020.

  34. Process Industry Practices Machinery. Compressor selection guidelines. 2013. https://pip.org/docs/default-source/practices-documents/reec001bf1ca80395a262f789edff00008ddc6a.pdf?sfvrsn=d3beca9e_0. Accessed 17 Jan 2020.

  35. Gresh MT. Compressor performance: aerodynamics for the user. Amsterdam: Elsevier; 2001.

    Google Scholar 

  36. Rezvani S, McIlveen-Wright D, Huang Y, Dave A, Deb Mondol J, Hewitt N. Comparative analysis of energy storage options in connection with coal fired integrated gasification combined cycles for an optimized part load operation. Energy Convers Manag. 2012;101:154–60. https://doi.org/10.1016/j.fuel.2011.07.034.

    Article  CAS  Google Scholar 

  37. Amos WA. Costs of storing and transporting hydrogen. National Renewable Energy Lab, Golden, CO. 1999. https://www.nrel.gov/docs/fy99osti/25106.pdf. Accessed 17 Jan 2020.

  38. Cau G, Cocco D, Serra F. Energy and cost analysis of small-size integrated coal gasification and syngas storage power plants. Energy Convers Manag. 2012;56:121–9. https://doi.org/10.1016/j.enconman.2011.11.025.

    Article  CAS  Google Scholar 

  39. Richards GA, McMillian MM, Gemmen RS, Rogers WA, Cully SR. Issues for low-emission, fuel-flexible power systems. Prog Energy Combust Sci. 2001;27(2):141–69. https://doi.org/10.1016/S0360-1285(00)00019-8.

    Article  CAS  Google Scholar 

  40. Lieuwen T, McDonell V, Santavicca D, Sattelmayer T. Burner development and operability issues associated with steady flowing syngas fired combustors. Combust Sci Technol. 2008;180(6):1169–92. https://doi.org/10.1080/00102200801963375.

    Article  CAS  Google Scholar 

  41. He F, Li Z, Liu P, Ma L, Pistikopoulos EN. Operation window and part-load performance study of a syngas fired gas turbine. Appl Energy. 2012;89(1):133–41. https://doi.org/10.1016/j.apenergy.2010.11.044.

    Article  CAS  Google Scholar 

  42. Frey HC, Zhu Y. Improved system integration for integrated gasification combined cycle (IGCC) systems. Environ Sci Technol. 2006;40:1693–9. https://doi.org/10.1021/es0515598.

    Article  CAS  Google Scholar 

  43. Smith AR, Klosek J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol. 2001;70(2):115–34. https://doi.org/10.1016/S0378-3820(01)00131-X.

    Article  CAS  Google Scholar 

  44. Geosits RF, Schmoe Lee A. IGCC – the challenges of integration. In: Proceedings of GT2005 ASME turbo expo 2005: power for land, sea, and air, Reno, NV. 2005. https://www.edockets.state.mn.us/EFiling/edockets/searchDocuments.do?method=showPoup&documentId={1AB68706-28A0-4706-B9A8-5C412EAF4BDE}&documentTitle=281454. Accessed 17 Jan 2020.

  45. Jaeger H. Plant design net rated 644 MW and 38% HHV on low rank coal, gas turbine world; March–April 2006. 2006.

    Google Scholar 

  46. Lee C, Lee SJ, Yun Y. Effect of air separation unit integration on integrated gasification combined cycle performance and NOx emission characteristics. Korean J Chem Eng. 2007;24(2):368–73. https://doi.org/10.1007/s11814-007-5047-7.

    Article  CAS  Google Scholar 

  47. NATO. Performance prediction and simulation of gas turbine engine operation for aircraft, marine, vehicular, and power generation. Technical report RTO-TRAVT-036. Research and Technology Organisation, North Atlantic Treaty Organisation. 2007. https://apps.dtic.mil/docs/citations/ADA466188. Accessed 17 Jan 2020.

  48. Gupta KK, Rehman A, Sarviya RM. Bio-fuels for the gas turbine: a review. Renew Sustain Energy Rev. 2010;14(9):2946–55. https://doi.org/10.1016/j.rser.2010.07.025. Accessed 17 Jan 2020

    Article  CAS  Google Scholar 

  49. Todd DM, Battista RA. Demonstrated applicability of hydrogen fuel for gas turbines. In: Proceedings of gasification for the future, Noordwijk, Nederland. 2000.

    Google Scholar 

  50. Shilling N, Jones RM. The response of gas turbines to a CO2 constrained environment. In: Gasification technology conference report, GE Power Systems.

    Google Scholar 

  51. Chiesa P, Lozza G, Mazzocchi L. Using hydrogen as gas turbine fuel. Trans ASME J Eng Gas Turb Power. 2005;127(1):73–80. https://doi.org/10.1115/1.1787513.

    Article  CAS  Google Scholar 

  52. Gardiner WC Jr, McFarland M, Morinaga K, Takeyama T, Walker BF. Initiation rate for shock-heated hydrogen-oxygen-carbon monoxide-argon mixtures as determined by OH induction time measurements. J Phys Chem. 1971;75:1504–9. https://doi.org/10.1021/j100680a022.

    Article  CAS  Google Scholar 

  53. Dean AM, Steiner DL, Wang EE. A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar systems: measurement of the rate constant for H + N2O = N2 + OH combust. Flame. 1978;32:73–83. https://doi.org/10.1016/0010-2180(78)90081-0.

    Article  CAS  Google Scholar 

  54. Fotache CG, Tan Y, Sung CJ, Law CK. Ignition of CO/H2/N2 versus heated air in counterflow: experimental and modeling results. Combust Flame. 2000;120:417–26. https://doi.org/10.1016/S0010-2180(99)00098-X.

    Article  CAS  Google Scholar 

  55. Wierzba I, Kilchyk V. Flammability limits of hydrogen–carbon monoxide mixtures at moderately elevated temperatures. Int J Hydrogen Energy. 2001;26:639–43. https://doi.org/10.1016/S0360-3199(00)00114-2.

    Article  CAS  Google Scholar 

  56. Mueller MA, Yetter RA, Dryer FL. Flow reactor studies and kinetic modeling of the H2/O2/NOX and CO/H2O/O2/NOX reactions. Int J Chem Kinet. 1999;31:705–24. https://doi.org/10.1002/(SICI)1097-4601(1999)31:10<705::AID-JCK4>3.0.CO;2-%23.

    Article  CAS  Google Scholar 

  57. Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of H2/CO combustion. Proc Combust Inst. 2005;30:1283–92. https://doi.org/10.1016/j.proci.2004.08.252.

    Article  CAS  Google Scholar 

  58. Zsely IG, Zador J, Turanyi T. Uncertainty analysis of updated hydrogenand carbon monoxide oxidation mechanisms. Proc Combust Inst. 2005;30:1273–81. https://doi.org/10.1016/j.proci.2004.08.172.

    Article  CAS  Google Scholar 

  59. Walton SM, He X, Zigler BT, Wooldridge MS. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc Combust Inst. 2007;31(2):3147–54. https://doi.org/10.1016/j.proci.2006.08.059.

    Article  CAS  Google Scholar 

  60. Donovan MT, He X, Zigler BT, Palmer TR, Wooldridge MS, Atreya A. Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust Flame. 2004;137(3):351–65. https://doi.org/10.1016/j.combustflame.2004.02.006.

    Article  CAS  Google Scholar 

  61. He X, Donovan MT, Zigler BT, Palmer TR, Walton SM, Wooldridge MS, Atreya A. Combust. Flame. 2005;142:266–75. https://doi.org/10.1016/j.combustflame.2005.02.014.

    Article  CAS  Google Scholar 

  62. Lee D, Hochgreb S. Hydrogen autoignition at pressures above the second explosion limit (0.6–4.0 MPa). Int J Chem Kinet. 1998;30:385–406. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<385::AID-KIN1>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  63. Elsworth JE, Haskell WW, Read IA. Non-uniform ignition processes in rapid-compression machines combust. Flame. 1969;13(4):437–8. https://doi.org/10.1016/0010-2180(69)90115-1.

    Article  CAS  Google Scholar 

  64. Vermeer DJ, Meyer JW, Oppenheim AK. Auto-ignition of hydrocarbons behind reflected shock waves combust. Flame. 1972;18(3):327–36. https://doi.org/10.1016/S0010-2180(72)80183-4.

    Article  CAS  Google Scholar 

  65. Fieweger K, Blumenthal R, Adomeit G. Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure combust. Flame. 1997;109(4):599–619. https://doi.org/10.1016/S0010-2180(97)00049-7.

    Article  CAS  Google Scholar 

  66. Walton SM, He X, Zigler BT, Wooldridge MS, Atreya A. Demonstration of distinct ignition regimes using high-speed digital imaging of Iso-octane mixtures. In: Proc. fourth joint meeting of the US Sections of the Combust. Inst. https://ci.confex.com/ci/2005/techprogram/P1498.HTM

  67. Walton SM, He X, Zigler BT, Wooldridge MS, Atreya A. An experimental investigation of iso-octane ignition phenomena. Combust Flame. 2007;150(3):246–62. https://doi.org/10.1016/j.combustflame.2006.07.016.

    Article  CAS  Google Scholar 

  68. Wang H. Private communication. 2005.

    Google Scholar 

  69. Chaos M, Dryer FL. Syngas combustion kinetics and applications. Combust Sci Technol. 2008;180(6):1053–96. https://doi.org/10.1080/00102200801963011.

    Article  CAS  Google Scholar 

  70. Grogan KP, Ihme M. Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc Combust Inst. 2015;35(2):2181–9. https://doi.org/10.1016/j.proci.2014.07.074.

    Article  CAS  Google Scholar 

  71. Voevodsky VV, Soloukhin RI. On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. Proc Combust Inst. 1965;10(1):279–83. https://doi.org/10.1016/S0082-0784(65)80173-4.

    Article  Google Scholar 

  72. Meyer J, Oppenheim A. On the shock-induced ignition of explosive gases. Symp Combust. 1971;13(1):1153–64. https://doi.org/10.1016/S0082-0784(71)80112-1.

    Article  Google Scholar 

  73. Mansfield AB, Wooldridge MS. High-pressure low-temperature ignition behavior of syngas mixtures. Combust Flame. 2014;161(9):2242–51. https://doi.org/10.1016/j.combustflame.2014.03.001.

    Article  CAS  Google Scholar 

  74. Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int J Hydrog Energy. 2007;32(15):3471–85. https://doi.org/10.1016/j.ijhydene.2007.01.011.

    Article  CAS  Google Scholar 

  75. Mittal G, Sung CJ, Yetter RA. Autoignition of H2/CO at elevated pressures in a rapid compression machine. Int J Chem Kinet. 2006;38:516. https://doi.org/10.1002/kin.20180.

    Article  CAS  Google Scholar 

  76. Frassoldati A, Faravelli T, Ranzi E. A wide range modeling study of NOx formation and nitrogen chemistry in hydrogen combustion. Int J Hydrogen Energy. 2006;31(15):2310–28. https://doi.org/10.1016/j.ijhydene.2006.02.014.

    Article  CAS  Google Scholar 

  77. Kalitan DM, Petersen EL. Ignition and oxidation of lean CO/H2 fuel blends in air 41st AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 10–13 July 2005, Tucson, Arizona (USA), paper 2005-3767. 2005. https://doi.org/10.2514/1.28123.

  78. Saxena P, Williams FA. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust Flame. 2006;145:316–23. https://doi.org/10.1016/j.combustflame.2005.10.004.

    Article  CAS  Google Scholar 

  79. Olm C, Zsély IG, Varga T, Curran HJ, Turányi T. Comparison of the performance of several recent syngas combustion mechanisms. Combust Flame. 2015;162:1793–812. https://doi.org/10.1016/j.combustflame.2014.12.001.

    Article  CAS  Google Scholar 

  80. Healy D, Kalitan DM, Aul CJ, Petersen EL, Bourque G, Curran HJ. Oxidation of C1−C5 alkane quinternary natural gas mixtures at high pressures. Energy Fuel. 2010;24:1521–8. https://doi.org/10.1021/ef9011005.

    Article  CAS  Google Scholar 

  81. Kéromnès A, Metcalfe WK, Heufer KA, Donohoe N, Das AK, Sung CJ, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci MC, Petersen EL, Pitz WJ, Curran HJ. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust Flame. 2013;160:995–1011. https://doi.org/10.1016/j.combustflame.2013.01.001.

    Article  CAS  Google Scholar 

  82. Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire JJJ. A comprehensive kinetic mechanism for CO, CH2 O, and CH 3 OH combustion. Int J Chem Kinet. 2007;39(3):109–36. https://doi.org/10.1002/kin.20218.

    Article  CAS  Google Scholar 

  83. Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK. USC Mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm/. Accessed 17 Jan 2020.

  84. Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego: Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism, version 2014-02-17. http://combustion.ucsd.edu. Accessed 17 Jan 2020.

  85. CRECK modeling Group Hydrogen/CO mechanism version 1212. http://creckmodeling.chem.polimi.it/kinetic.html/. Accessed 17 Jan 2020.

    Google Scholar 

  86. Li X, You X, Wu F, Law CK. Uncertainty analysis of the kinetic model prediction for high-pressure H2/CO combustion. Proc Combust Inst. 2015;35(1):617–24. https://doi.org/10.1016/j.proci.2014.07.047.

    Article  CAS  Google Scholar 

  87. Starik AM, Titova NS, Sharipov AS, Kozlov VE. Syngas oxidation mechanism. Combust. Explos. Shock Waves. 2010;46:491–506. https://doi.org/10.1007/s10573-010-0065-x.

    Article  Google Scholar 

  88. Smith GP, Golden DM, Frenklach M, Moriary NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner WC, Lissianski VV, Qin Z. GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/version30/text30.html. Accessed 15 Nov 2019.

  89. Rasmussen CL, Hansen J, Marshall P, Glarborg P. Experimental measurements and kinetic modeling of CO/H2/O2/NOx conversion at high pressure. Int J Chem Kinet. 2008;40:454–80. https://doi.org/10.1002/kin.20327.

    Article  CAS  Google Scholar 

  90. Sun H, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst. 2007;31(1):439–46. https://doi.org/10.1016/j.proci.2006.07.193.

    Article  CAS  Google Scholar 

  91. Ahmed SS, Mauß F, Moréac G, Zeuch T. A comprehensive and compact n-heptane oxidation model derived using chemical lumping. Phys Chem Chem Phys. 2007;9:1107–26. https://doi.org/10.1039/B614712G.

    Article  CAS  Google Scholar 

  92. Dagaut P, Lecomte F, Mieritz J, Glarborg P. Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO-H2 mixtures. Int J Chem Kinet. 2003;35(11):564–75. https://doi.org/10.1002/kin.10154.

    Article  CAS  Google Scholar 

  93. Wu KT, Lee HT, Juch CI, Wan HP, Shim HS, Adams BR, Chen SL. Study of syngas co-firing and reburning in a coal fired boiler. Fuel. 2004;83(14–15):1991–2000. https://doi.org/10.1016/j.fuel.2004.03.015.

    Article  CAS  Google Scholar 

  94. Ranzi E, Sogaro A, Gaffuri P, Pennati G, Faravelli T. A wide range modeling study of methane oxidation. Combust Sci Technol. 1994;96(4–6):279–325. https://doi.org/10.1080/00102209408935359.

    Article  CAS  Google Scholar 

  95. Nist best fit. 2006. http://kinetics.nist.gov/index.php. Accessed 15 Nov 2019.

  96. Tsang W, Hampson RF. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data. 1986;15(3):1087–279. https://doi.org/10.1063/1.555759.

    Article  CAS  Google Scholar 

  97. Timonen RS, Ratajczak E, Gutman D. The addition and dissociation reaction atomic hydrogen + carbon monoxide. dblharw. oxomethyl. 2. Experimental studies and comparison with theory. J Phys Chem. 1987;91:5325. https://doi.org/10.1021/j100304a037.

    Article  CAS  Google Scholar 

  98. Jachimowski CJ. Chemical kinetic reaction mechanism for the combustion of propane. Combust Flame. 1984;55(2):213–24. https://doi.org/10.1016/0010-2180(84)90029-4.

    Article  CAS  Google Scholar 

  99. Gardiner WCJ, editor. Combustion chemistry. New York: Springer; 1984. https://doi.org/10.1007/978-1-4684-0186-8.

    Book  Google Scholar 

  100. Michael JV, Su MC, Sutherland JW, Carroll JJ, Wagner AF. Rate constants for H + O2 + M f HO2 + M in seven Bath gases. J Phys Chem A. 2002;106:5297–313. https://doi.org/10.1021/jp020229w.

    Article  CAS  Google Scholar 

  101. Westbrook CK, Dryer F. Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci. 1984;10(1):1–57. https://doi.org/10.1016/0360-1285(84)90118-7.

    Article  CAS  Google Scholar 

  102. Peeters J, Mahnew G. Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames. Symp Combust. 1973;1973(14):133–46. https://doi.org/10.1016/S0082-0784(73)80015-3.

    Article  Google Scholar 

  103. Petersen EL, Davidson DF, Hanson RK. Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures. Combust Flame. 1999;117:272–90. https://doi.org/10.1016/S0010-2180(98)00111-4.

    Article  CAS  Google Scholar 

  104. Goodings JM, Hayhurst ANJ. Heat release and radical recombination in premixed fuel-lean flames of H2+ O2+ N2. Rate constants for H + OH + M → H2O + M and HO2+ OH → H2O + O2. Chem Soc Faraday Trans 2. 1988;84:745–62. https://doi.org/10.1039/F29888400745.

    Article  CAS  Google Scholar 

  105. Hong Z, Vasu SS, Davidson DF, Hanson RK. Experimental study of the rate of OH + HO2 f H2O + O2 at high temperatures using the reverse reaction. J Phys Chem A. 2010;114:5520–5. https://doi.org/10.1021/jp100739t.

    Article  CAS  Google Scholar 

  106. Wooldridge MS, Hanson RK, Bowman CT. A shock tube study of CO + OH → CO2 + H and HNCO + OH → products via simultaneous laser absorption measurements of OH and CO2. Int J Chem Kinet. 1996;28:361–72. https://doi.org/10.1002/(SICI)1097-4601(1996)28:5<361::AID-KIN5>3.0.CO;2-T.

    Article  CAS  Google Scholar 

  107. Zhao Z, Li J, Kazakov A, Dryer FL. Temperature-dependent feature sensitivity analysis for combustion modeling. Int J Chem Kinet. 2005;37:282. https://doi.org/10.1002/kin.20080.

    Article  CAS  Google Scholar 

  108. Joshi AV, Wang H. Master equation modeling of wide range temperature and pressure dependence of CO + OH → products. Int J Chem Kinet. 2006;38:57. https://doi.org/10.1002/kin.20137.

    Article  CAS  Google Scholar 

  109. Wooldridge MS, Hanson RK, Bowman CT. A shock tube study of the CO+OH → CO2 +H reaction. Proc Combust Inst. 1994;25:741–8. https://doi.org/10.1016/S0082-0784(06)80706-X.

    Article  Google Scholar 

  110. Golden DM, Smith GP, McEwen AB, Yu CL, Eitneer B, Frenklach M, Vaghjiani GL, Ravishankara AR, Tully FP. OH (OD) + CO: measurements and an optimized RRKM fit. J Phys Chem A. 1998;102(44):8598–606. https://doi.org/10.1021/jp982110m.

    Article  CAS  Google Scholar 

  111. Sun HY, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst. 2006;31(1):439–46. https://doi.org/10.1016/j.proci.2006.07.193.

    Article  CAS  Google Scholar 

  112. Lin MC, Bauer SH. Bimolecular reaction of N2O with CO and the recombination of O and CO as studied in a single-pulse shock tube. J Chem Phys. 1969;50:3377. https://doi.org/10.1063/1.1671561.

    Article  CAS  Google Scholar 

  113. Warnatz J. Rate coefficients in the C/H/O system. In: Gardiner Jr WC, editor. Combustion chemistry. New York: Springer; 1984. p. 197–360. https://doi.org/10.1007/978-1-4684-0186-8.

    Chapter  Google Scholar 

  114. Hardy JW, Gardiner WC Jr, Burcat A. Recombination of carbon monoxide and oxygen atoms. Int J Chem Kinet. 1974;10:503–17. https://doi.org/10.1002/kin.550100508.

    Article  Google Scholar 

  115. Wagner HG, Zabel F, Bunsenges B. Neuere Untersuchungen zum thermischen Zerfall von CO2. Teil II. Phys Chem. 1974;72:705. https://doi.org/10.1002/bbpc.19740780717.

    Article  Google Scholar 

  116. Inn ECY. Rate of recombination of oxygen atoms and CO at temperatures below ambient. J Chem Phys. 1974;61:1589. https://doi.org/10.1063/1.1682139.

    Article  CAS  Google Scholar 

  117. Simonaitis R, Heicklen J. Kinetics and mechanism of the reaction of O (3P) with carbon monoxide. J Chem Phys. 1972;56:2004. https://doi.org/10.1063/1.1677490.

    Article  CAS  Google Scholar 

  118. Toby S, Sheth S, Toby FS. The chemistry of combustion processes. In: Sloane TM, editor. ACS symposium series, vol. 249. Washington: DC pp; 1984. p. 267–76. https://doi.org/10.1021/bk-1983-0249.ch016.

    Chapter  Google Scholar 

  119. Kondratiev VN. On the rate of CO + O recombination. React Kinet Catal Lett. 1974;1:7–13. https://doi.org/10.1007/BF02075114.

    Article  Google Scholar 

  120. Kondratiev VN. Proc Combust Inst. 1959;7:41.

    Article  Google Scholar 

  121. Allen MT, Yetter RA, Dryer FL. High pressure studies of moist carbon monoxide/nitrous oxide kinetics. Combust Flame. 1997;109:449–70. https://doi.org/10.1016/S0010-2180(96)00181-2.

    Article  CAS  Google Scholar 

  122. Troe J. Thermal dissociation and recombination of polyatomic molecules. Proc Combust Inst. 1975;15(1):667–80. https://doi.org/10.1016/S0082-0784(75)80337-7.

    Article  CAS  Google Scholar 

  123. Faravelli T, Frassoldati A, Ranzi E. Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures. Combust Flame. 132:188–207. https://doi.org/10.1016/S0010-2180(02)00437-6.

  124. Frassoldati A, Faravelli T, Ranzi E. Kinetic modeling of the interactions between NO and hydrocarbons at high temperature. Combust Flame. 2003;135:97–112. https://doi.org/10.1016/S0010-2180(03)00152-4.

    Article  CAS  Google Scholar 

  125. Boivin P, Jiménez C, Sánchez AL, Williams FA. A four-step reduced mechanism for syngas combustion. Combust Flame. 2011;158(6):1059–63. https://doi.org/10.1016/j.combustflame.2010.10.023.

    Article  CAS  Google Scholar 

  126. Boivin P, Jiménez C, Sánchez AL, Williams FA. An explicit reduced mechanism for H2–air combustion. Proc Combust Inst. 2011;33(1):517–23. https://doi.org/10.1016/j.proci.2010.05.002.

    Article  CAS  Google Scholar 

  127. Burke MP, Chaos M, Dryer FL, Ju Y. Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures. Combust Flame. 2010;157(4):618–31. https://doi.org/10.1016/j.combustflame.2009.08.009.

    Article  CAS  Google Scholar 

  128. Burke MP, Chen Z, Ju Y, Dryer FL. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust Flame. 2009;156(4):771–9. https://doi.org/10.1016/j.combustflame.2009.01.013.

    Article  CAS  Google Scholar 

  129. Delattin F, Di Lorenzo G, Rizzo S, Bram S, De Ruyck J. Combustion of syngas in a pressurized microturbine-like combustor: experimental results. Appl Energy. 2010;87(4):1441–52. https://doi.org/10.1016/j.apenergy.2009.08.046.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Bartocci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, M. et al. (2020). Syngas Production, Storage, Compression and Use in Gas Turbines. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_12

Download citation

Publish with us

Policies and ethics