Part of the Cognitive Intelligence and Robotics book series (CIR)


Over the last two decades, information systems have revolutionized with more computer networking, Internets, World Wide Web (www), and Internet of Things (IoT). This resulted in a voluminous increase in both static and dynamic data size, offering a high chance of having potential threats to the global information infrastructure.


  1. 1.
    Z. Yu, J.J.P. Tsai, Intrusion Detection, A Machine Learning Approach, vol. 3. (Imperial College Press, 2011), ISBN-13: 978-1848164475Google Scholar
  2. 2.
    M. Abdalla, X. Boyen, C. Chevalier, D. Pointcheval, in Distributed Public-Key Cryptography from Weak Secrets, ed. by S. Jarecki, G. Tsudik Public Key Cryptography—PKC 2009, LNCS 5443, (© Springer, 2009), pp. 139–159Google Scholar
  3. 3.
    U. Somani, K. Lakhani, M. Mundra, in Implementing Digital Signature with RSA Encryption Algorithm to Enhance the Data Security of Cloud in Cloud Computing. 1st International Conference on Parallel, Distributed and Grid Computing (PDGC—2010) (2010)Google Scholar
  4. 4.
    D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13(2), 222–232 (1987)CrossRefGoogle Scholar
  5. 5.
    M. Ali Aydin, A. Halim Zaim, K. Gökhan Ceylan, A hybrid intrusion detection system design for computer network security. Comput. Electr. Eng. 35, 517–526 (2009)Google Scholar
  6. 6.
    D. Anderson, T. Lunt, H. Javitz, A. Tamaru, A. Valdes, Safeguard final report: detecting unusual program behavior using the NIDES statistical component. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, 1993Google Scholar
  7. 7.
    A.H. Sung, S. Mukkamala, in Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. Proceedings of International Symposium on Applications and the Internet (SAINT 2003) (2003), pp. 209–217Google Scholar
  8. 8.
    L. Zhou, F. Liu, A swarm-intelligence-based intrusion detection technique. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6(7B) (2006)Google Scholar
  9. 9.
    S. Owais, V. Snasel, P. Kromer, A. Abraham, Survey: using genetic algorithm approach in intrusion detection systems techniques, in CISIM 2008 (IEEE, 2008), pp. 300–307Google Scholar
  10. 10.
    P. LaRoche, A. Nur ZincirHeywood, in 802.11 Network Intrusion Detection using Genetic Programming. Proceeding GECCO ‘05 Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (2005), pp. 170–171Google Scholar
  11. 11.
    Y. Lin Ying, Y. Zhang, Y.-J. Ou, in The Design and Implementation of Host-based Intrusion Detection System. Third International Symposium on Intelligent Information Technology and Security Informatics (2010)Google Scholar
  12. 12.
    N. Devarakonda, S. Pamidi, V.V. Kumari, A. Govardhan, Integrated Bayes network and hidden markov model for host based IDS. Int. J. Comput. Appl. 41(20), 45–49 (2012)Google Scholar
  13. 13.
    J. Shun, H.A. Malki, in Network Intrusion Detection System Using Neural Networks. Fourth International Conference on Natural Computation (2008)Google Scholar
  14. 14.
    Y.-a. Huang, W. Lee, in A Cooperative Intrusion Detection System for Ad hoc Networks. Proceedings of the 1st ACM workshop on Security of ad hoc and sensor networks (2003), pp. 135–147Google Scholar
  15. 15.
    Y. Wang, H. Yang, X. Wang, R. Zhang, in Distributed Intrusion Detection System Based on Data Fusion Method. Fifth World Congress on Intelligent Control and Automation. WCICA 2004 (2004)Google Scholar
  16. 16.
    A. Abraham, R. Jain, J. Thomas, S.Y. Han, D-SCIDS: distributed soft computing intrusion detection system. J. Netw. Comput. Appl. 30(1), 81–98 (2007)CrossRefGoogle Scholar
  17. 17.
    R.P. Lippmann, A. Vitae, R.K. Cunningham, Improving intrusion detection performance using keyword selection and neural networks. Comput. Netw. 34(4), 597–603 (2000)CrossRefGoogle Scholar
  18. 18.
    Nsl-kdd data set for network-based intrusion detection systems. (2009)
  19. 19.
    G. MeeraGandhi, K. Appavoo, S.K. Srivatsa, Effective network intrusion detection using classifiers decision trees and decision rules. Int. J. Adv. Netw. Appl. 02(03), 686–692 (2010)Google Scholar
  20. 20.
    D. Gamberger, N. Lavrac, S. Dzeroski, Noise detection and elimination in data preprocessing: experiments in medical domains. Appl. Artif. Intell. 14, 205–223 (2000)CrossRefGoogle Scholar
  21. 21.
    O.P. Rud, Data Mining Cookbook (Wiley Inc., 2001)Google Scholar
  22. 22.
    S. Chakrabarti, E. Cox, E. Frank, R.H. Güting, J. Han, X. Jiang, M. Kamber, S.S. Lightstone, T.P. Nadeau, R.E. Neapolitan, D. Pyle, M. Refaat, M. Schneider, T.J. Teorey, I.H. Witten, Data Mining: Know It All, (Elsevier, 2005)Google Scholar
  23. 23.
    E. Rahm, H.H. Do, Data cleaning: problems and current approaches, bulletin of the technical committee on data engineering. IEEE Comput. Soc. 23(4) (2000)Google Scholar
  24. 24.
    M.L. Lee, H. Lu, T.W. Ling, Y.T. Ko, in Cleansing Data for Mining and Warehousing. Proceedings of 10th DEXA (1999)Google Scholar
  25. 25.
    Y. Haitovsky, Missing data in regression analysis. J. Roy. Stat. Soc. 30(1) (1968)zbMATHGoogle Scholar
  26. 26.
    S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, S. Ishii, A Bayesian missing value estimation method. Bioinformatics 19, 2088–2096 (2003)zbMATHCrossRefGoogle Scholar
  27. 27.
    M. Saar-Tsechansky, F. Provost, Handling missing values when applying classification models. J. Mach. Learn. Res. 8, 1625–1657 (2007)zbMATHGoogle Scholar
  28. 28.
    J. Han, M. Kamber, J. Pei, in Data Mining: Concepts and Techniques”, Third Edition”, The Morgan Kaufmann Series in Data Management Systems, ISBN-10: 0123814790), Morgan Kaufmann Publishers, 2011Google Scholar
  29. 29.
    Eibe Frank, Mark A. Hall, Ian H. Witten, in Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. The Morgan Kaufmann Series in Data Management Systems (2011)Google Scholar
  30. 30.
    M.H. Dunham, Data Mining: Introductory and Advanced Topics (Prentice-Hall, 2002). ISBN 0-13-088892-3Google Scholar
  31. 31.
    D. Hand, H. Mannila, R. Smyth, Principles of Data Mining (MIT, Cambridge, MA, United States, 2001). ISBN 0-262-08290-XGoogle Scholar
  32. 32.
    L.T. Jolliffe, Principal Component Analysis (Springer, Berlin, 1986)zbMATHCrossRefGoogle Scholar
  33. 33.
    W.S. Torgerson, Multidimensional Scaling. Psychometrika 17, 401–419 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    R. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)CrossRefGoogle Scholar
  35. 35.
    R. Jensen, Q. Shen, Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches (Wiley-IEEE Press, 2008)Google Scholar
  36. 36.
    J.H. Friedman, J.W. Tukey, A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C 23(9), 881–890 (1974)zbMATHCrossRefGoogle Scholar
  37. 37.
    J.H. Friedman, W. Stuetzle, Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)MathSciNetCrossRefGoogle Scholar
  38. 38.
    C. Bregler, S. M. Omoundro, in Nonlinear Image Interpolation Using Manifold Learning, ed. by G. Tesauro, D.S. Touretzky, T.K. Leen. Advances in Neural Information Processing Systems, vol. 7 (The MIT Press, 1995), pp. 973–980Google Scholar
  39. 39.
    M.A. Kramer, Nonlinear principal component analysis using auto associative neural networks. AIChE J. 37(2), 233–243 (1991)CrossRefGoogle Scholar
  40. 40.
    J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  41. 41.
    S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  42. 42.
    Z. Pawlak, Rough Sets—Theoretical Aspects of Reasoning About Data (Kluwer Academic Publishers, Boston, London, Dordrecht, 1991), p. 229Google Scholar
  43. 43.
    Z. Pawlak, Rough set theory and its applications to data analysis. Cybern. Syst. 29, 661–688 (1998)zbMATHCrossRefGoogle Scholar
  44. 44.
    R.W. Swiniarski, Rough sets methods in feature reduction and classification. Int. J. Appl. Math. Comput. Sci. 11(3), 565–582 (2001)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Y. Zhao, F. Luo, S.K.M. Wong, Y.Y. Yao, in A General Definition of an Attribute Reduct. Rough Sets and Knowledge Technology, Second International Conference, RSKT 2007, Proceedings, LNAI 4481 (2007), pp. 101–108Google Scholar
  46. 46.
    C. Liu, Y. Li, Y. Qin, in Research on Anomaly Intrusion Detection Based on Rough Set Attribute Reduction. The 2nd International Conference on Computer Application and System Modeling (Published by Atlantis Press, Paris, France, 2012)Google Scholar
  47. 47.
    Y.Y. Yao, Y. Zhao, Discernibility matrix simplification for constructing attribute reducts. Inf. Sci. 179(5), 867–882 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Y. Zhao, Y. Yao, F. Luo, Data analysis based on discernibility and indiscernibility. Inf. Sci. 177, 4959–4976 (2007)zbMATHCrossRefGoogle Scholar
  49. 49.
    A. Murua, W. Stuetzle, J. Tantrum, S. Sieberts, Model based document classification and clustering. Int. J. Tomogr. Stat. 8(W08), 1–24 (2008)Google Scholar
  50. 50.
    A. Vimal, S.R. Valluri, K. Karlapalem, in An Experiment with Distance Measures for Clustering. International Conference on Management of Data COMAD 2008, Mumbai, India, 17–19 Dec 2008Google Scholar
  51. 51.
    V. Torra, in Fuzzy c-means for Fuzzy Hierarchical Clustering. Proceedings of FUZZ ‘05 the 14th IEEE International Conference on Fuzzy Systems, 25–25 May 2005. ISBN: 0-7803-9159-4, pp. 646–651Google Scholar
  52. 52.
    M.W. Trosset, Representing clusters: K-means clustering, self-organizing maps, and multidimensional scaling. Technical Report 08-03, Department of Statistics, Indiana University, Bloomington, IN, 20 Feb 2008Google Scholar
  53. 53.
    A. Semana, Z. Abu Bakara, A.M. Sapawia, Centre-based hard and soft clustering approaches for Y-STR data. J. Genet. Genealogy 6(1) (2010)Google Scholar
  54. 54.
    M. Setnes, Fuzzy relational classifier trained by fuzzy clustering. IEEE Trans. Syst., Man, Cybern. Part B: Cybern. 29(5) (1999)CrossRefGoogle Scholar
  55. 55.
    J. Gomez, D. Dasgupta, in Evolving Fuzzy Classifiers for Intrusion Detection. Proceedings of the 2002 IEEE, Workshop on Information Assurance, United States (2002)Google Scholar
  56. 56.
    N.R. Pal, J.C. Bezdek, On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995)CrossRefGoogle Scholar
  57. 57.
    D. Dembele, P. Kaster, Fuzzy c-means method for clustering microarray data. Bioinformatics 19(8), 973–980 (2003)CrossRefGoogle Scholar
  58. 58.
    J.C. Bezdek, in Partitioning the Variables for Alternating Optimization of Real-Valued Scalar Fields. Proceedings NAFIPS. 2002 Annual Meeting of the North American Fuzzy Information Processing Society (2002)Google Scholar
  59. 59.
    S.C.G. Kirkpatrick, C.D. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 220(1983), 49–58 (1983)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Y. Wang, Fuzzy clustering analysis by using genetic algorithm. ICIC Exp. Lett. 2(4), 331–337 (2008)Google Scholar
  61. 61.
    B.I. Wohlmuth, in Discretization Methods and Iterative Solvers Based on Domain Decomposition. Lecture Notes in Computational Science and Engineering (Springer, 2001)Google Scholar
  62. 62.
    K. Das, O.P. Vyas, A suitability study of discretization methods for associative classifiers. Int. J. Comput. Appl. 5(10) (2010)CrossRefGoogle Scholar
  63. 63.
    G. Agre, S. Peev, On supervised and unsupervised discretization. Cybern. Inf. Tech. 2(2) (2002)Google Scholar
  64. 64.
    Q. Zhu, L. Lin, M.-L. Shyu, S.-C. Chen, in Effective Supervised Discretization for Classification Based on Correlation Maximization”, (IRI 2011), pp. 390–395Google Scholar
  65. 65.
    N. Girard, K. Bertet, M. Visani, in A Local Discretization of Continuous Data for Lattices: Technical Aspects, ed. by A. Napoli, V. Vychodil, (CLA 2011). ISBN 978-2-905267-78-8, pp. 409–412Google Scholar
  66. 66.
    H. Liu, F. Hussain, C.L. Tan, M. Dash, Discretization: an enabling technique. Data Min. Knowl. Disc. 6, 393–423 (2002)Google Scholar
  67. 67.
    E. Frank, I.H. Witten, in Making Better Use of Global Discretization. Proceedings of the Sixteenth International Conference on Machine Learning (1999), pp. 115–123Google Scholar
  68. 68.
    J. Gama, L. Torgo, C. Soares, in Dynamic Discretization of Continuous Attributes. Proceeding IBERAMIA ‘98 Proceedings of the 6th Ibero-American Conference on AI: Progress in Artificial Intelligence (Springer, London, UK, 1998), pp. 160–169. ISBN:3-540-64992-1Google Scholar
  69. 69.
    R. Kohavi, M. Sahami, in Error-Based and Entropy-Based Discretization of Continuous Features. Proceedings of the Second International Conference on Knowledge and Data Mining (AAAI Press, Menlo Park, 1996)Google Scholar
  70. 70.
    J. Gama, C. Pinto, in Discretization from Data Streams: Applications to Histograms and Data Mining. Proceeding of the 2006 ACM Symposium on Applied Computing (2006), pp. 662–667. ISBN:1-59593-108-2, 2006Google Scholar
  71. 71.
    H. Liu, R. Setiono, in Chi2: Feature Selection and Discretization of Numeric Attributes. Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence (1995)Google Scholar
  72. 72.
    F.E.H. Tay, L. Shen, A modified Chi2 algorithm for discretization. IEEE Trans. Knowl. Data Eng. 14(3) (2002)CrossRefGoogle Scholar
  73. 73.
    R.-P. Li, Z.-O. Wang, in An Entropy-Based Discretization Method for Classification Rules with Inconsistency Checking. Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 4–5 Nov 2002Google Scholar
  74. 74.
    R. Jin, Y. Breitbart, C. Muoh, Data discretization unification. J. Knowl. Inf. Syst. Arch. 19(1), 1–29 (2009)CrossRefGoogle Scholar
  75. 75.
    R. Bertelsen, T.R. Martinez, in Extending ID3 Through Discretization of Continuous Inputs, FLAIRS’94 Florida Artificial Intelligence Research Symposium (1994), pp. 122–125Google Scholar
  76. 76.
    R. Butterworth, D.A. Simovici, G.S. Santos, L. O-M, A greedy algorithm for supervised discretization. J. Biomed. Inform. 37(4), 285–292 (2004)CrossRefGoogle Scholar
  77. 77.
    J.Y. Ching, K.C. Wong Andrew, K.K.C. Chan, Inductive learning from continuous and mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. (1995)Google Scholar
  78. 78.
    R. Giraldez, J.S., Aguilar-ruiz et al., Discretization oriented to decision rules generation. Front. Artif. Intell. Appl. (2002)Google Scholar
  79. 79.
    T. Mitchell, Machine Learning (McGraw-Hill, New York, 1997)zbMATHGoogle Scholar
  80. 80.
    J.-S. Roger Jang, C.-T. Sun, E. Mizutani, in Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (Prentice Hall, 1997). ISBN: 0-13-261066-3Google Scholar
  81. 81.
    I. Czarnowski, P. Jędrzejowicz, Instance reduction approach to machine learning and multi-database mining. Ann UMCS Inf AI 4, 60–71 (2006)Google Scholar
  82. 82.
    Y. Li, L. Guo, An active learning based TCM-KNN algorithm for supervised network intrusion detection, in 26th Computers and Security (2007), pp. 459–467CrossRefGoogle Scholar
  83. 83.
    A. Niculescu-Mizil, R. Caruana, in Predicting Good Probabilities with Supervised Learning. Proceedings of 22nd International Conference on Machine Learning (ICML-2005) (ACM Press, New York, NY, USA, 2005), pp. 625–632. ISBN 1-59593-180-52005Google Scholar
  84. 84.
    G.E. Batista, M.C. Monard, An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17(5–6), 519–533 (2003)CrossRefGoogle Scholar
  85. 85.
    S.B. Kotsiantis, D. Kanellopoulos, P.E. Pintelas, Data preprocessing for supervised leaning. Int. J. Comput. Sci. 1(2) (2006). ISSN 1306-4428Google Scholar
  86. 86.
    S.B. Kotsiantis, Supervised machine learning: a review of classification techniques. Informatica 31(2007), 249–268 (2007)MathSciNetzbMATHGoogle Scholar
  87. 87.
    T.B.K.A. Bouchard-Côté, J.D.D. Klein, in Painless Unsupervised Learning with Features. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL (Los Angeles, California). 2010 Association for Computational Linguistics (2010), pp. 582–590Google Scholar
  88. 88.
    Q.V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng, in Building High-level Features Using Large Scale Unsupervised Learning. Appearing in Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012Google Scholar
  89. 89.
    C. Liu, J. Xie,, J. Xie, J. Xie, in Stochastic Unsupervised Learning on Unlabeled Data. JMLR: Workshop and Conference Proceedings, 2012 Workshop on Unsupervised and Transfer Learning, vol. 27, pp. 111–122Google Scholar
  90. 90.
    J. Zhuang, J. Wang, X. Lan, in Unsupervised Multiple Kernel Learning. JMLR: Workshop and Conference Proceedings, Asian Conference on Machine Learning, vol. 20, (2011), pp. 129–144Google Scholar
  91. 91.
    T. Maul, S. Baba, Unsupervised learning in second-order neural networks for motion analysis. Neurocomputing 74, 884–895 (2011)CrossRefGoogle Scholar
  92. 92.
    L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)CrossRefGoogle Scholar
  93. 93.
    R.S. Sutton, A.G. Barto, in Reinforcement Learning: An Introduction (The MIT Press, 1998). ISBN-10: 0262193981Google Scholar
  94. 94.
    M.A. Wiering, H.P. van Hasselt, Ensemble algorithms in reinforcement learning. IEEE Trans. Syst. Man, Cybern. Part B 38(4), 930–936 (2008)CrossRefGoogle Scholar
  95. 95.
    W. Maydl, B. Sick, in Recurrent and Non-recurrent Dynamic Network Paradigms: A Case Study. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000Google Scholar
  96. 96.
    C. Rodrigues, P. Gérard, C. Rouveirol, in On and Off-Policy Relational Reinforcement Learning. Late-Breaking Papers of the International Conference on Inductive Logic Programming (2008)Google Scholar
  97. 97.
    D.R. Lowne, S.J. Roberts, R. Garnett, Sequential non stationary dynamic classification. Pattern Recognit. 43, 897–905 (2010)zbMATHCrossRefGoogle Scholar
  98. 98.
    S.M. Lee, S.J. Roberts, in Sequential Dynamic Classification Using Latent Variable Models. Advance Access publication on 27 Jan 2010, Published by Oxford University Press on behalf of The British Computer Society, 2010Google Scholar
  99. 99.
    S.M. Lee, S.J. Roberts, Sequential dynamic classification using latent variable models. Technical report, Technical Report PARG-08-02, University of Oxford, 2008Google Scholar
  100. 100.
    E. Even-Dar, Y. Mansour, Learning rates for Q-learning. J. Mach. Learn. Res. 5, 1–25 (2003)Google Scholar
  101. 101.
    R. Dearden, N. Friedman, S. Russell, in Bayesian Q-learning. Fifteenth National Conference on Artificial Intelligence (AAAI) (1998)Google Scholar
  102. 102.
    Á. Herrero, E. Corchado, Multiagent systems for network intrusion detection: a review, in Computational Intelligence in Security for Information Systems, AISC 63, ed. by Á. Herrero et al. (Springer, Berlin, Heidelberg, 2009) ©, pp. 143–154Google Scholar
  103. 103.
    W. Lee, in A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences (Columbia University, 1999)Google Scholar
  104. 104.
    W. Lee, S.J. Stolfo, K.W. Mok, in A Data Mining Framework for Building Intrusion Detection Models. IEEE Symposium on Security and Privacy (1999), pp. 120–132Google Scholar
  105. 105.
    A.L. Servin, Multi-Agent Reinforcement Learning for Intrusion Detection, Ph.D. thesis, The University of York, 2009Google Scholar
  106. 106.
    J.P. Anderson, in Computer Security Threat Monitoring and Surveillance. Technical report (James P. Anderson Co., Fort Washington, PA., 1980)Google Scholar
  107. 107.
    D.E. Denning, Information Warfare and Security (Addison Wesley Reading, Ma, 1999)Google Scholar
  108. 108.
    D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13, 222–232 (1987)CrossRefGoogle Scholar
  109. 109.
    S. Axelsson, in Intrusion Detection Systems: A Survey and Taxonomy. Technical Report 99-15 (Chalmers University, 2000)Google Scholar
  110. 110.
    K. Shafi, An Online and Adaptive Signature-based Approach for Intrusion Detection Using Learning Classifier Systems, PhD thesis, 2008Google Scholar
  111. 111.
    V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009)CrossRefGoogle Scholar
  112. 112.
    A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, J. Srivastava, in A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. Proceedings of the Third SIAM International Conference on Data Mining, 1–3 May 2003, San Francisco, CA, 2003Google Scholar
  113. 113.
    J.P. Early, Behavioral Feature Extraction For Network Anomaly Detection. CERIAS Tech Report 2005-55, Doctoral Dissertation, Purdue University West Lafayette, IN, USA (2005). ISBN:0-542-34849-7Google Scholar
  114. 114.
    R. Sekar, A. Gupta, J. Frullo, T. Hanbhag, A. Tiwari, H. Yang, S. Zhou, Specification-based anomaly detection: a new approach for detecting. Int. J. Netw. Secur. 1(2), 84–102 (2005)Google Scholar
  115. 115.
    K. Wang, J.J. Parekh, S.J. Stolfo, in Anagram: A Content Anomaly Detector Resistant To Mimicry Attack. Proceedings of the Ninth International Symposium on Recent Advances in Intrusion Detection (RAID), 2006Google Scholar
  116. 116.
    T. Won, C. Alaettinoglu, in Internet Routing Anomaly Detection and Visualization. Proceedings of International Conference on Dependable Systems and Networks (IEEE, 2005), pp. 172–181Google Scholar
  117. 117.
    Uci: Machine Learning Repository.
  118. 118.
    R.L. Kruse, A.J. Ryba, in Data Structures and Program Design in C++ (Prentice Hall, 1998). ISBN-13:9780137689958Google Scholar
  119. 119.
    J.F. Peters (ed.), in Transactions on Rough Sets XI. Lecture Notes in Computer Science/Transactions on Rough Sets (Springer, Berlin, 2010)zbMATHGoogle Scholar
  120. 120.
    J.F. Peters, A. Skowron, C.-C. Chan, J.W. Grzymala-Busse, W.P. Ziarko (eds.), in Transactions on Rough Sets XIII. Lecture Notes in Computer Science/Transactions on Rough Sets (Springer, 2011)Google Scholar
  121. 121.
    X. Ren, Intrusion detection method using protocol classification and rough set based support vector machine. Comput. Inf. Sci. 2(4), 100–108 (2009)Google Scholar
  122. 122.
    Y. Caballero, R. Bello, Y. Salgado, M.M. García, A method to edit training set based on rough sets. Int. J. Comput. Intell. Res. 3(3), 219–229. ISSN 0973-1873 (2007)Google Scholar
  123. 123.
    D. Slezak, G. Wang, M.S. Szczuka, I. Düntsch, Y. Yao, in Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. 10th International Conference, RSFDGrC 2005, Regina, Canada, Aug 31—Sept 3, 2005, Proceedings, Part I (Springer, 2005)Google Scholar
  124. 124.
    D. Deng, H. Huang, Dynamic reduction based on rough sets in incomplete decision systems. Rough Sets Knowl Technol LNCS 4481(2007), 76–83 (2007)CrossRefGoogle Scholar
  125. 125.
    A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems, in Intelligent Decision Support-Handbook of Applications and advances of the Rough Sets Theory, ed. by Slowinski (1991), pp. 331–362CrossRefGoogle Scholar
  126. 126.
    C. Velayutham, K. Thangavel, Unsupervised quick reduct algorithm using rough set theory. J. Electron. Sci. Technol. 9(3) (2011)Google Scholar
  127. 127.
    S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. Neural Netw. 11, 124–136 (2000)CrossRefGoogle Scholar
  128. 128.
    C. Cortes, V.N. Vapnik, Support vector network. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  129. 129.
    V.N. Vapnik, Statistical Learning Theory (Wiley Inc., New York, 1998)zbMATHGoogle Scholar
  130. 130.
    B.E. Boser, I. Guyon, V. Vapnik, in A Training Algorithm for Optimal Margin Classifier. Proceedings of Fifth Annual Conference on Computational Learning Theory (COLT-92), USA, 1992, pp. 144–152Google Scholar
  131. 131.
    B. Zadrozny, in Learning and Evaluating Classifiers under Sample Selection Bias. International Conference on Machine Learning ICML’04, 2004Google Scholar
  132. 132.
    R. Jensen, Combining Rough and Fuzzy Sets for Feature Selection. Ph.D. thesis (2005)Google Scholar
  133. 133.
    S.K. Pal, P. Mitra, Case generation using rough sets with fuzzy representation. IEEE Trans. Knowl. Data Eng. 16(3) (2004)CrossRefGoogle Scholar
  134. 134.
    Richard Jensen, Qiang Shen, Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15, 73–89 (2007)CrossRefGoogle Scholar
  135. 135.
    R. Jensen, Q. Shen, in Fuzzy-Rough Sets for Descriptive Dimensionality Reduction. Proceedings of the 11th International Conference on Fuzzy Systems (2002), pp. 29–34Google Scholar
  136. 136.
    M. Yang, S. Chen, X. Yang, in A Novel Approach of Rough Set-Based Attribute Reduction Using Fuzzy Discernibility Matrix. Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 03 (IEEE Computer Society, 2007), pp. 96–101Google Scholar
  137. 137.
    Hu Qinghua, Yu. Daren, Zongxia Xie, Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recogn. Lett. 27, 414–423 (2006)CrossRefGoogle Scholar
  138. 138.
    R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. Data Eng. 17(1) (2005)Google Scholar
  139. 139.
    R. Jensen, Q. Shen, Fuzzy-rough attribute reduction with application to web categorization, fuzzy sets and systems 141(3), 469–485 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    H. Guohua, S. Yuemei, in An Attribute Reduction Method Based on Fuzzy-Rough Sets Theories. First International Workshop on Education Technology and Computer Science (2009)Google Scholar
  141. 141.
    R. Jensen, Q. Shen, in Rough and Fuzzy Sets for Dimensionality Reduction (2001)Google Scholar
  142. 142.
    R. Jensen, A. Tuson, Q. Shen, in Extending Propositional Satisfiability to Determine Minimal Fuzzy-Rough Reducts. Proceedings of FUZZ-IEEE (2010)Google Scholar
  143. 143.
    R. Jensen, C. Cornelis, in Fuzzy-Rough Instance Selection. Proceedings of FUZZ-IEEE (2010)Google Scholar
  144. 144.
    E.P. Ephzibah, B. Sarojini, J. Emerald Sheela, A study on the analysis of genetic algorithms with various classification techniques for feature selection. Int. J. Comput. Appl. 8(8) (2010)CrossRefGoogle Scholar
  145. 145.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA, 1996)zbMATHGoogle Scholar
  146. 146.
    Y. Rama Devi, P. Venu Gopal, P.S.V.S. Sai Prasad, Fuzzy rough data reduction using SVD. Int. J. Comput. Electr. Eng. 3(3) (2011)Google Scholar
  147. 147.
    J.R. Anaraki, M. Eftekhari, in Improving Fuzzy-Rough Quick Reduct for Feature Selection. IEEE 19th Iranian Conference on Electrical Engineering (ICEE, 2011), pp. 1–6Google Scholar
  148. 148.
    S. Kirkpatrik, C. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    S. Bandyopadhyay, Simulated annealing using a reversible jump markov chain monte carlo algorithm for fuzzy clustering. IEEE Trans. Knowl. Data Eng. 17(4) (2005)CrossRefGoogle Scholar
  150. 150.
    X.Y. Wang, G. Whitwell, J.M. Garibaldi, in The Application Of A Simulated Annealing Fuzzy Clustering Algorithm For Cancer Diagnosis. Proceedings of IEEE 4th International Conference on Intelligent Systems Design and Application, Budapest, Hungary, 26–28 Aug 2004, pp. 467–472Google Scholar
  151. 151.
    N. Sengupta, A. Srivastava, J. Sil, in Chapter 14 Reduction of Data Size in Intrusion Domain Using Modified Simulated Annealing Fuzzy Clustering Algorithm (Springer Science and Business Media LLC, 2013)Google Scholar
  152. 152.
    C.J.C.H. Watkins, P. Dayan, Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)Google Scholar
  153. 153.
    S. Manju, M. Punithavalli, An analysis of Q-learning algorithms with strategies of reward function. Int. J. Comput. Sci. Eng. (IJCSE), 3(2) (2011). ISSN: 0975-3397Google Scholar
  154. 154.
    A.G. Barto, S. Mahadevan, Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13, 341–379 (2003)Google Scholar
  155. 155.
    T.G. Dietterich, Hierarchical reinforcement learning with the maxq value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Information TechnologyUniversity College of BahrainManamaBahrain
  2. 2.Department of Computer Science and TechnologyIndian Institute of Engineering Science and Technology (IIEST), ShibpurHowrahIndia

Personalised recommendations