Skip to main content

Mobile Authentication Using Tapping Behavior

  • Conference paper
  • First Online:
Advances in Cyber Security (ACeS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1132))

Included in the following conference series:

  • 1072 Accesses

Abstract

Mobile phones or smartphones are rapidly becoming the primary and essential communication device in people’s lives that cannot be replaced by other communication devices, because of the portability, the size, and the multifunctionality provided in it. Nowadays, mobile phones are being used in almost every aspect of life and work as your personal assistant e.g. meeting reminders. It monitors your daily activities and gives suggestions accordingly e.g. health applications. With the help of smartphone online transactions can be performed, meetings can be conducted via video conferencing. It contains your personal files, emails, bank information, and your social network accounts record. It also contains information related to the credentials, which are stored in its memory. Despite all the benefits, there is a great threat to private information, in the case when mobile is snatched, misplaced, or in the use of an unauthorized user. An attacker can steal the user’s private data and can misuse it without the owner’s consent. Although the traditional authentication methods are in use, they have several limitations. In this paper, an authentication system is proposed that uses a combination of user behavior and touchscreen which can seamlessly capture the user’s tapping behavior. The information obtained from the touch screen sensors reflects the unique tapping behavior of each user. Moreover, machine learning is utilized to perform the classification for the user’s authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, T.: Study finds 61% of people check their phone 5 minutes after waking up. https://www.ubergizmo.com/2016/12/study-61-percent-check-phones-5-mins-waking-up/. Accessed 21 Nov 2019

  2. Shafique, U., et al.: Modern authentication techniques in smart phones: security and usability perspective. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 8(1), 331–340 (2017)

    MathSciNet  Google Scholar 

  3. Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, R.R.: Tapprints: your finger taps have fingerprints. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services - MobiSys 2012, p. 323 (2012)

    Google Scholar 

  4. Xu, Z., Bai, K., Zhu, S.: TapLogger: inferring user inputs on smartphone touchscreens using on-board motion sensors. In: Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks - WISEC 2012, p. 113 (2012)

    Google Scholar 

  5. Clarke, N.L., Furnell, S.M.: Advanced user authentication for mobile devices. Comput. Secur. 26(2), 109–119 (2007)

    Article  Google Scholar 

  6. Clarke, N.L., Furnell, S.M.: Authenticating mobile phone users using keystroke analysis. Int. J. Inf. Secur. 6(1), 1–14 (2006)

    Article  Google Scholar 

  7. Schaffer, K.B.: Expanding continuous authentication with mobile devices. Computer 48(11), 92–95 (2015)

    Article  Google Scholar 

  8. Zhu, H., Hu, J., Chang, S., Lu, L.: ShakeIn: secure user authentication of smartphones with single-handed shakes. IEEE Trans. Mob. Comput. 16(10), 2901–2912 (2017)

    Article  Google Scholar 

  9. Guerra-Casanova, J., Sánchez-Ávila, C., Bailador, G., de Santos Sierra, A.: Authentication in mobile devices through hand gesture recognition. Int. J. Inform. Secur. 11(2), 65–83 (2012)

    Article  Google Scholar 

  10. Muaaz, M., Mayrhofer, R.: Smartphone-based gait recognition: from authentication to imitation. IEEE Trans. Mob. Comput. X(X), 1 (2017)

    Google Scholar 

  11. Damaševičius, R., et al.: Smartphone user identity verification using gait characteristics. Symmetry 8(10), 100 (2016)

    Article  Google Scholar 

  12. Neal, T., Woodard, D.: Surveying biometric authentication for mobile device security. J. Pattern Recognit. Res. 11(1), 74–110 (2016)

    Article  Google Scholar 

  13. Pinola, M.: The most (and least) common PIN numbers and numeric passwords. is yours one of them? https://lifehacker.com/the-most-and-least-common-pin-numbers-and-numeric-pas-5944567. Accessed 21 Nov 2018

  14. Bernstein, J.: Survey says: people have way too many passwords to remember (2016). https://www.buzzfeednews.com/article/josephbernstein/survey-says-people-have-way-too-many-passwords-to-remember#.mm4e5jJ7Q. Accessed 23 Nov 2018

  15. Ali, A.B.A., Ponnusamay, V., Sangodiah, A.: User behaviour-based mobile authentication system. In: Bhatia, S.K., Tiwari, S., Mishra, K.K., Trivedi, M.C. (eds.) Advances in Computer Communication and Computational Sciences. AISC, vol. 924, pp. 461–472. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6861-5_40

    Chapter  Google Scholar 

  16. Crawford, H., Renaud, K., Storer, T.: A framework for continuous, transparent mobile device authentication. Comput. Secur. 39, 127–136 (2013)

    Article  Google Scholar 

  17. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference using accelerometers on smartphones. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems and Applications - HotMobile 2012, p. 1 (2012)

    Google Scholar 

  18. Jakobsson, M. Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile devices. In: Proceedings of the 4th USENIX Conference on Hot Topics in Security, p. 9 (2009)

    Google Scholar 

  19. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics. ACM Trans. Inform. Syst. Secur. 5(4), 367–397 (2002)

    Article  Google Scholar 

  20. Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proceedings of the 4th ACM Conference on Computer and Communications Security, pp. 48–56 (1997)

    Google Scholar 

  21. Krishnamoorthy, S., Rueda, L., Saad, S., Elmiligi, H.: Identification of user behavioral biometrics for authentication using keystroke dynamics and machine learning. In: Proceedings of the 2018 2nd International Conference on Biometric Engineering and Applications - ICBEA 2018, pp. 50–57 (2018)

    Google Scholar 

  22. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke dynamics. Int. J. Inf. Secur. 1(2), 69–83 (2002)

    Article  Google Scholar 

  23. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for keystroke dynamics. In: 2009 IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 125–134 (2009)

    Google Scholar 

  24. Cai, L., Chen, H.: TouchLogger: inferring keystrokes on touch screen from smartphone motion. HotSec 11(2011), 9 (2011)

    Google Scholar 

  25. Karatzouni, S., Clarke, N.: Keystroke analysis for thumb-based keyboards on mobile devices. In: IFIP International Federation for Information Processing, vol. 232, pp. 253–263 (2007)

    Chapter  Google Scholar 

  26. Zahid, S., Shahzad, M., Khayam, S.A., Farooq, M.: Keystroke-based user identification on smart phones. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 224–243. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04342-0_12

    Chapter  Google Scholar 

  27. Tasia, C.-J., Chang, T.-Y., Cheng, P.-C., Lin, J.-H.: Two novel biometric features in keystroke dynamics authentication systems for touch screen devices. Secur. Commun. Netw. 7(4), 750–758 (2014)

    Article  Google Scholar 

  28. Sen, S., Muralidharan, K.: Putting ‘pressure’ on mobile authentication. In: 2014 7th International Conference on Mobile Computing and Ubiquitous Networking, ICMU 2014, pp. 56–61 (2014)

    Google Scholar 

  29. Buschek, D., De Luca, A., Alt, F.: Improving accuracy, applicability and usability of keystroke biometrics on mobile touchscreen devices. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI 2015, pp. 1393–1402 (2015)

    Google Scholar 

  30. Antal, M., Szabó, L.Z., Bokor, Z.: Identity information revealed from mobile touch gestures. Stud. Univ. Babes-Bolyai Inform. 59 (2014)

    Google Scholar 

  31. Zhang, H., Patel, V.M., Fathy, M., Chellappa, R.: Touch gesture-based active user authentication using dictionaries. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 207–214 (2015)

    Google Scholar 

  32. Sae-Bae, N., Memon, N., Isbister, K., Ahmed, K.: Multitouch gesture-based authentication. IEEE Trans. Inf. Forensics Secur. 9(4), 568–582 (2014)

    Article  Google Scholar 

  33. Muaaz, M., Mayrhofer, R.: Smartphone-based gait recognition: from authentication to imitation. IEEE Trans. Mob. Comput. 16(11), 3209–3221 (2017)

    Article  Google Scholar 

  34. Ferrero, R., Gandino, F., Montrucchio, B., Rebaudengo, M., Velasco, A., Benkhelifa, I.: On gait recognition with smartphone accelerometer. In: 2015 4th Mediterranean Conference on Embedded Computing (MECO), pp. 368–373 (2015)

    Google Scholar 

  35. Al-Naffakh, N., Clarke, N., Li, F., Haskell-Dowland, P.: Unobtrusive gait recognition using smartwatches. In: 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5 (2017)

    Google Scholar 

  36. Fernandez-lopez, P., Sanchez-casanova, J., Tirado-martin, P., Liu-jimenez, J.: Optimizing resources on smartphone gait recognition. In: International Joint Conference on Biometrics, pp. 1–6 (2017)

    Google Scholar 

  37. Laghari, A., Waheed-ur-Rehman, Memon, Z.A.: Biometric authentication technique using smartphone sensor. In: 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 381–384 (2016)

    Google Scholar 

  38. Maghsoudi, J., Tappert, C.C.: A behavioral biometrics user authentication study using motion data from android smartphones. In: 2016 European Intelligence and Security Informatics Conference (EISIC), pp. 184–187 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasaki Ponnusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponnusamy, V., Yee, C.M., Ali, A.B.A. (2020). Mobile Authentication Using Tapping Behavior. In: Anbar, M., Abdullah, N., Manickam, S. (eds) Advances in Cyber Security. ACeS 2019. Communications in Computer and Information Science, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-15-2693-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2693-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2692-3

  • Online ISBN: 978-981-15-2693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics