Skip to main content

Eddy-Viscosity Transport Modelling: A Historical Review

  • Chapter
  • First Online:
50 Years of CFD in Engineering Sciences

Abstract

This contribution presents the authors’ view of the historical evolution of modelling turbulence by way of the simple (though, some would say, outrageously simplistic) notion that the local turbulent stress–strain connection should be the same as in a laminar Newtonian flow. The principal emphasis is on modelling at a level where two transport equations are solved for scalar properties of turbulence, the level of approximation popularized (though not invented) by D. B. Spalding at Imperial College in the early 1970s. The successes and failures of the approach are examined. The chapter concludes by showing examples of closure at eddy viscosity level of what would be regarded as steady flows though treated by way of a time-dependent solution of the transport equations. These lead, in appropriate circumstances, to time-dependent structures which contribute additional momentum and heat transport thereby enhancing agreement with experiment. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A practice retained by Daly and Harlow [13] but who discarded the eddy-viscosity approach in favour of solving transport equations for the Reynolds stresses.

  2. 2.

    The quantity \(\omega^{2}\) differs only by a constant from Spalding’s W.

  3. 3.

    If the form of model applicable to regions excluding the viscosity-affected sublayer is meant (i.e. ‘the high Re number k-ε model’), however, a more correct attribution would be to Hanjalić’s thesis [26].

  4. 4.

    The small secondary strains associated with the curvature exert strong amplification or damping effects on the turbulent stresses.

References

  1. Barre, S., Bonnet, J.-P., Gatski, T. B., & Sandham, N. D. (2002). Ch. 19: Compressible high speed flows. In B. Launder & N. Sandham (Eds.), Closure strategies for turbulent and transitional flows. CUP.

    Google Scholar 

  2. Baughn, J. W., Hechanova, A. E., & Yan, X. (1992). An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. ASME Journal of Heat Transfer, 113, 1023–1028.

    Google Scholar 

  3. Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences, 23(1), 1–680.

    MATH  Google Scholar 

  4. Bradshaw, P., Ferriss, D. H., & Atwell, N. P. (1967). Calculation of boundary layer development using the turbulent energy equation. Journal of Fluid Mechanics, 28, 593–616.

    Article  Google Scholar 

  5. Bradshaw, P. (1966). The turbulence structure of equilibrium boundary layers. NPL. Rep. 1184, National Physical Laboratory, Teddington, UK.

    Google Scholar 

  6. Buleev, N. J. (1962). Theoretical model of the mechanism of turbulent exchange in fluid flows (p. 957). Moscow; AERE Trans: Teploperedacha (Heat Transfer), USSR Academy of Sciences.

    Google Scholar 

  7. Chien, K.-Y. (1982). Prediction of channel and boundary layer flows with a low-Reynolds-number turbulence model. AIAA Journal, 20, 33–38.

    Article  MATH  Google Scholar 

  8. Chou, P. Y. (1945). On the velocity correlations and the solution of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38–54.

    Article  MathSciNet  MATH  Google Scholar 

  9. Clauser, F. H. (1954). Turbulent boundary layers in adverse pressure gradients. Journal of Aerosol Science, 21, 91–108. (See also: The turbulent boundary layer. Advances in Applied Mechanics, 4, 1–51, Academic Press, New York, 1956).

    Google Scholar 

  10. Cotton, M. A., & Jackson, J. D. (1990). Vertical tube air flows in the turbulent mixed-convection regime using a low-Reynolds-number k-ε model. International Journal of Heat and Fluid Flow, 33, 275–286.

    Google Scholar 

  11. Craft, T. J., Gerasimov, A. V., Iacovides, H., & Launder, B. E. (2002). Progress in the generalization of wall-function treatments. International Journal of Heat and Fluid Flow, 23, 148–160.

    Article  Google Scholar 

  12. Czarny, O., Iacovides, H., & Launder, B. E. (2002). Precessing vortex structures within rotor-stator disc cavities, Flow, Turbulence and Combustion, 69, 51–61.

    Google Scholar 

  13. Daly, B. J., & Harlow, F. H. (1970). Transport equations in turbulence. Physics of Fluids, 13, 2634–2649.

    Article  Google Scholar 

  14. Davydov, B. I. (1959). On the statistical dynamics of an incompressible turbulent fluid. Doklady Akademii Nauk SSSR, 127, 768–771.

    Google Scholar 

  15. Davydov, B. I. (1961). On the statistical dynamics of an incompressible turbulent fluid. Doklady Akademii Nauk SSSR, 136, 47–50.

    MathSciNet  Google Scholar 

  16. Durbin, P. A. (1991). Near-wall turbulence closure modelling without damping functions. Theoretical and Computational Fluid Dynamics, 3, 1–13.

    MATH  Google Scholar 

  17. Escudier, M. P. (1966), The distribution of mixing length in turbulent flows near walls. Imperial College, Heat Transfer Section Rep. TWF/TN/1.

    Google Scholar 

  18. Forstall, W., & Shapiro, A. H. (1952). Momentum and mass transfer in coaxial gas jets, ASME. Journal of Applied Mechanics, 17, 399–408.

    Google Scholar 

  19. Gan, X., Kilic, M., & Owen, J. M. (1995). Flow between contra-rotating discs. Journal of Turbomachinery, 117, 298–305.

    Article  Google Scholar 

  20. Girimaji, S. S. (2006). Partially-averaged Navier-Stokes method for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. ASME Journal of Applied Mechanics, 73, 413–421.

    Article  MATH  Google Scholar 

  21. Glushko, G. S. (1965). Turbulent boundary layer on a flat plate in an incompressible fluid. Izv. Akad. Nauk SSSR, Mekh. 4, 13–23.

    Google Scholar 

  22. Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B., & Wolfshtein, M. (1969). Heat and mass transfer in recirculating flows. London: Academic Press.

    MATH  Google Scholar 

  23. Hanjalić, K., & Launder, B. E. (1980). Sensitizing the dissipation equation to secondary strains. ASME Journal of Fluids Engineering, 102, 34–40.

    Article  Google Scholar 

  24. Hanjalić, K., Popovac, M., & Hadžiabdić, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow, 25, 1047–1051.

    Article  Google Scholar 

  25. Hanjalić, K. (1996). some resolved and unresolved issues in modelling non-equilibrium and unsteady turbulent flows. In W. Rodi & G. Bergeles (Eds.), Engineering turbulence modelling and experiments-3 (pp. 3–18). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  26. Hanjalić, K. (1970). Two-dimensional asymmetric flow in ducts. Ph.D. thesis, Faculty of Engineering, University of London, UK.

    Google Scholar 

  27. Hanjalić, K., & Launder, B. E. (2011). Modelling turbulence in engineering and the environment: Second-moment routes to closure. CUP.

    Google Scholar 

  28. Harlow, F. H., & Nakayama, P. I. (1967). Turbulence transport equations. Physics of Fluids, 10, 2323.

    Article  MATH  Google Scholar 

  29. Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Rep LA-3854, Los Alamos Scientific Laboratory, Los Alamos.

    Google Scholar 

  30. Hoyas, S., & Jimenez, J. (2006). Scaling of velocity fluctuations in turbulent channels up to Reτ = 2003. Physics of Fluids, 18, 0011702.

    Google Scholar 

  31. Huang, P. G. (1986). The computation of elliptic turbulent flows with second-moment-closure models. Ph.D. thesis, Faculty of Technology, University of Manchester.

    Google Scholar 

  32. Hussein, J. H., Capp, S., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number momentum-conserving axisymmetric jet. Journal of Fluid Mechanics, 258, 31–75.

    Article  Google Scholar 

  33. Iacovides, H., Launder, B. E., & Loizou, P. A. (1987). Numerical computation of flow through a 90-degree bend. International Journal of Heat and Fluid Flow, 8, 320–325.

    Article  Google Scholar 

  34. Iacovides, H., & Raisee, M. (1999). Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades. International Journal of Heat and Fluid Flow, 20, 320–328.

    Article  Google Scholar 

  35. Iacovides, H., & Raisee, M. (1997). Computation of flow and heat transfer in 2D rib-roughened passages. In K. Hanjalić & T. Peeters (Eds.), Turbulence heat & mass transfer 2—supplement. The Netherlands: Delft University Press.

    MATH  Google Scholar 

  36. Iacovides, H., Launder, B. E., & Zacharos, A. (2009). The economical computation of unsteady flow structures in rotating cavities. In Proceedings of the 6th International Symposium on Turbulence & Shear Flow Phenomena (pp. 797–802).

    Google Scholar 

  37. Iacovides, H., Nikas, K., & Te Braak, M. (1996). Turbulent flow computations in rotating cavities using low Reynolds number models (Paper 96-GT-59). Birmingham, UK: ASME Gas Turbine Congress.

    Google Scholar 

  38. Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Fluid Flow, 15, 301–314.

    Google Scholar 

  39. Jones, W. P. (1971). Laminarization in strongly accelerated boundary layers. Ph.D. thesis, Faculty of Engineering, University of London.

    Google Scholar 

  40. Jones, W. P. (2002). Ch. 20: The joint scalar probability density function method. In: B. Launder & N. Sandham (Eds.), Closure strategies for turbulent and transitional flows. CUP.

    Google Scholar 

  41. Kenjereš, S., & Hanjalić, K. (1999). Transient analysis of Rayleigh-Bénard convection with a RANS model. International Journal of Heat and Fluid Flow, 20, 329–340.

    Article  Google Scholar 

  42. Kline, S. J., Morkovin, M. V., Sovran, G., & Cockrell, D. J. (Eds.). (1968). Computation of turbulent boundary layers-Vol 2. In AFOSR-IFP-Stanford Conference, August 18–25.

    Google Scholar 

  43. Kline, S. J., Cantwell, B. J., & Lilley, G. M. (1981). Proceedings of the AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows: Comparison of Computations and Experiments, Vol. 1, Objectives, Evaluation of Data, Specification of Test Cases. Thermosciences Division, Stanford University, Stanford, CA.

    Google Scholar 

  44. Kline, S. J., Cantwell, B. J., & Lilley, G. M. (1982). Proceedings of the AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows: Comparison of Computations and Experiments, Vol. 2, Taxonomies, Reporters’ Summaries, Evaluation and Conclusions. Thermosciences Division, Stanford University, Stanford, CA.

    Google Scholar 

  45. Kolmogorov, A. N. (1942). Equations of turbulent motion in an incompressible fluid. Izvestiya Akademii Nauk SSR, Serie Physics, 6(1–2), 56–58.

    Google Scholar 

  46. Lam, C. K., & Bremhorst, K. (1981). Modified form of the k-ε model for predicting wall turbulence. Journal of Fluids Engineering, 103, 456–460.

    Article  Google Scholar 

  47. Launder, B. E. (2015). First steps in modelling turbulence and its origins: A commentary on Reynolds (1895) ‘On the dynamical theory of incompressible viscous fluids and the determination of the criterion’. Philosophical Transactions of the Royal Society A, 20140231, 373.

    MathSciNet  MATH  Google Scholar 

  48. Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–138.

    Article  Google Scholar 

  49. Launder, B. E. (1986). Low Reynolds number turbulence near walls. Rep TFD/86/4, Mechanical Engineering Dept, UMIST, Manchesster, UK.

    Google Scholar 

  50. Launder, B. E., Morse, A. P., Rodi, W., & Spalding, D. B. (1973). Prediction of free shear flows: a comparison of the performance of six turbulence models. In Free turbulent shear flows (Vol. 1, pp. 361–426) (Conference held at Langley Research Center, July 20–21, 1972) NASA Rep SP-321.

    Google Scholar 

  51. Laurence, D. R., Uribe, J. C., & Utyuzhnikov, S. V. (2004). A robust formulation of the v2–f model. Flow, Turbulence and Combustion, 75, 169–185.

    MATH  Google Scholar 

  52. Menter, F. R., & Egorov, Y. (2010). Scale-adaptive simulation method for unsteady turbulent flows prediction, Pt 1: Theory and model description. Flow, Turbulence Combustion, 85, 113–138.

    Article  MATH  Google Scholar 

  53. Morkovin, M. V., Bushnell, D. M., Edelman, R. B., & Libby, P. A. (1973). Report of the conference evaluation committee. In Free turbulent shear flows (Vol. 1, pp. 673–695). (Conference held at Langley Research Center, July 20–21, 1972) NASA Rep SP-321.

    Google Scholar 

  54. Moser, R. D., Kim, J., & Mansour, N. N. (1999). DNS of turbulent channel flow up to Reτ = 590. Physics of Fluids, 11, 943.

    Google Scholar 

  55. Ng, K. H., & Spalding, D. B. (1972). Turbulence model for boundary layers near walls. Physics of Fluids, 15, 20–30.

    Article  MATH  Google Scholar 

  56. Panchapakesan, N. R., & Lumley, J. L. (1993). Turbulence measurements in axisymmetric jets of air and helium; Part 1: Air jets. Journal of Fluid Mechanics, 246, 197–223.

    Article  Google Scholar 

  57. Patankar, S. V., & Spalding, D. B. (1967). Heat and mass transfer in boundary layers. London: Morgan-Grampian Press.

    Google Scholar 

  58. Patel, V. C., Rodi, W., & Scheuerer, G. (1985). Turbulence models for near-wall and low-Reynolds-number flows. AIAA Journal, 23, 1308–1319.

    Article  MathSciNet  Google Scholar 

  59. Pope, S. B. (1978). An explanation of the round-jet/plane-jet anomaly. AIAA Journal, 16, 3311–3340.

    Article  Google Scholar 

  60. Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  61. Prandtl, L. (1925). Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM, 5, 136.

    Article  MATH  Google Scholar 

  62. Prandtl, L. (1945). Über ein neues Formelsystem für die ausgebildeten Turbulenz. Nachrichten von der Akad. der Wissenschaft in Gōttingen.

    Google Scholar 

  63. Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water should be direct or sinuous and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society, 174, 935–982.

    Article  MATH  Google Scholar 

  64. Reynolds, O. (1895). On the dynamical theory of incompressible viscous flows and the determination of the criterion. Philosophical Transactions of the Royal Society, 186A, 123–164.

    MATH  Google Scholar 

  65. Rodi, W., & Spalding, D. B. (1970). A two-parameter model of turbulence and its application to free jets. Wärme und Stoffübertragung, 3, 85–95.

    Article  Google Scholar 

  66. Rodi, W. (1968). Statistical theory of non-homogeneous turbulence: Translation of J.C. Rotta’s papers into English. Imperial College Mech. Eng. Dept. Rep. TWF/TN/38 and TWF/TN/39.

    Google Scholar 

  67. Rodi, W. (1975). A review of experimental data of uniform-density, free turbulent boundary layers. In B. E. Launder (Ed.), Studies in convection 1 (pp. 79–165). London: Academic Press.

    Google Scholar 

  68. Rotta, J. C. (1951). Statistische Theorie nichthomogener Turbulenz: Part 1: Zeitschrift für Physik, 129, 547–573; Part 2: Zeitschrift für Physik, 131, 51–77.

    Google Scholar 

  69. Saffman, P. G. (1970). A model for inhomogeneous turbulent flow. Proceedings of the Royal Society, A317, 417–433.

    MATH  Google Scholar 

  70. Scheuerer, G. (1983). Entwicklung eines Verfahrens zur Berechnung zweidimensionaler Grenzschichten an Gasturbinenschauffeln. Dr Ing Thesis, University of Karlsruhe, Germany.

    Google Scholar 

  71. Schiestel, R., & Dejoan, A. (2005). Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics, 18, 443–468.

    Article  MATH  Google Scholar 

  72. Spalding, D. B. (1967). Heat transfer from turbulent separated flows. Journal of Fluid Mechanics, 27, 97–109.

    Article  Google Scholar 

  73. Spalding, D. B. (1971). Concentration fluctuations in a round turbulent jet. Chemical Engineering Science, 26, 95–107.

    Article  Google Scholar 

  74. Spalding, D. B. (1971b). The k-W model of turbulence. Mech. Eng. Dept. Rep TW/TN/A/16, Imperial College, London.

    Google Scholar 

  75. Tatsumi, K., Iwai, H., Neo, E. C., Inaoka, K., & Suzuki, K. (1999). Prediction of time-mean characteristics and periodical fluctuation of velocity and thermal fields of a backward-facing step, 1167–1172. In S. Banerjee & J. K. Eaton (Eds.), Turbulence & shear-flow phenomena1. New York: Begell House.

    Google Scholar 

  76. Taylor, G. I. (1915). Eddy motion in the atmosphere. Philosophical Transactions of the Royal Society, A215, 1–26.

    Google Scholar 

  77. Taylor, G. I. (1932). The transport of vorticity and heat through fluids in turbulent motion. Proceedings of the Royal Society, 135(828), 685–702.

    MATH  Google Scholar 

  78. Taylor, A. M. K., Whitelaw, J. H., & Yianneskis, M. J. (1982). Curved duct with strong secondary motion—Velocity measurements of developing laminar and turbulent flow. Journal of Fluids Engineering, 104, 350–359.

    Article  Google Scholar 

  79. Townsend, A. A. (1956). The structure of turbulent shear flows. Cambridge University Press.

    Google Scholar 

  80. Von Kármán, Th. (1930). Mechanische Āhnlichkeit und Turbulenz. In Proceedings of the 3rd International Congress on Applied Mechanics, Stockholm, Pt. 1, 85.

    Google Scholar 

  81. Wilcox, D. C. (1998). Turbulence modeling for CFD (2nd ed.). La Cañada, California: DCW Industries.

    Google Scholar 

  82. Wilcox, D. C., & Rubesin, M. W. (1980). Progress in turbulence modelling for complex flow fields including effects of compressibility. NASA Tech. Rep: TP 1517, NASA AMES Research Center.

    Google Scholar 

  83. Wilcox, D. (2006). Turbulence modeling for CFD (3rd ed.). La Cañada, California: DCW Industries.

    Google Scholar 

  84. Wouters, H. A., Peeters, T. W., & Roekaerts, D. (2002). Joint velocity-scalar PDF methods. In B. Launder & N. Sandham (Eds.), Closure strategies for turbulent and transitional flows. CUP.

    Google Scholar 

  85. Yap, C. R. (1987). Turbulent heat and momentum transfer in recirculating and impinging flows. Ph.D. thesis, Faculty of Technology, University of Manchester.

    Google Scholar 

  86. Zacharos, A. (2010). The use of unsteady RANS in the computation of 3-dimensional flow in rotating cavities. Ph.D. thesis, Faculty of Engineering & Physical Sciences, University of Manchester, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Launder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanjalić, K., Launder, B.E. (2020). Eddy-Viscosity Transport Modelling: A Historical Review. In: Runchal, A. (eds) 50 Years of CFD in Engineering Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2670-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2670-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2669-5

  • Online ISBN: 978-981-15-2670-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics