Skip to main content

Spatial Distribution of Oxygen-Vacancy Pairs and Oxygen Movement in Yttria-Stabilized Zirconia

  • Conference paper
  • First Online:
Advances in Energy Research, Vol. 1

Abstract

Different local ionic configurations can be encountered in the long-time dynamics of yttria-stabilized zirconia (YSZ). In our previous work, we introduced a new theoretical framework to capture the effect of these configurations on oxygen ion movement in a coarse-grained sense, with which we can capture the effect of the local environments in YSZ on kinetic parameters. Here ionic diffusion in bulk YSZ is probed using microsecond long classical molecular dynamics (MD) calculations using another interatomic potential. The overall results obtained from a classical MD simulation are qualitatively similar to the ones obtained in our previous study employed. We show that the probability of finding O2−-vacancy (O2−-vac) pairs in a local environment affects the oxide ion movement. The average rates and Arrhenius parameters are found to be sensitive to Y3+ content in the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.C. Singhal, K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, 2003)

    Google Scholar 

  2. J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance (CRC press, Boca Raton, 2016)

    Google Scholar 

  3. E. Lee, F.B. Prinz, W. Cai, Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys. Rev. B. 83, 52301 (2011). https://doi.org/10.1103/PhysRevB.83.052301

    Article  Google Scholar 

  4. A. Bogicevic, C. Wolverton, Nature and strength of defect interactions in cubic stabilized zirconia. Phys. Rev. B. 67, 24106 (2003). https://doi.org/10.1103/PhysRevB.67.024106

    Article  Google Scholar 

  5. F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, H. Okazaki, Molecular dynamics studies of yttria stabilized zirconia. I. Structure and oxygen diffusion. J. Phys. Soc. Jpn. 61, 2848–2857 (1992)

    Google Scholar 

  6. F. Shimojo, H. Okazakl, Molecular dynamics studies of yttria stabilized zirconia. II. Microscopic mechanism of oxygen diffusion. J. Phys. Soc. Jpn. 61, 4106–4118 (1992). https://doi.org/10.1143/jpsj.61.4106

  7. R. Pornprasertsuk, P. Ramanarayanan, C.B. Musgrave, F.B. Prinz, Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 103513 (2005). https://doi.org/10.1063/1.2135889

    Article  Google Scholar 

  8. R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale, Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion.S 177, 1251–1258 (2006). https://doi.org/10.1016/j.ssi.2006.06.030

    Article  Google Scholar 

  9. F. Pietrucci, M. Bernasconi, A. Laio, M. Parrinello, Vacancy-vacancy interaction and oxygen diffusion in stabilized cubic ZrO2 from first principles. Phys. Rev. B—Condens. Matter Mater. Phys. 78, 1–7 (2008). https://doi.org/10.1103/physrevb.78.094301

  10. V.J. Bhute, A. Chatterjee, Accuracy of a Markov state model generated by searching for basin escape pathways. J. Chem. Phys. 138 (2013)

    Google Scholar 

  11. V.J. Bhute, A. Chatterjee, Building a kinetic Monte Carlo model with a chosen accuracy. J. Chem. Phys. 138 (2013)

    Google Scholar 

  12. M. Jaipal, A. Chatterjee, Relative occurrence of oxygen-vacancy pairs in yttrium-containing environments of Y2O3 -doped ZrO2 can be crucial to ionic conductivity (n.d.). https://doi.org/10.1021/acs.jpcc.7b05329

  13. K.C. Lau, B.I. Dunlap, The roles of classical molecular dynamics simulation in solid oxide fuel cells, in Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy (2006)

    Google Scholar 

  14. P.K. Schelling, S.R. Phillpot, D. Wolf, Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J. Am. Ceram. Soc. 84, 1609–1619 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00885.x

    Article  Google Scholar 

  15. S. Divi, A. Chatterjee, Accelerating rare events while overcoming the low-barrier problem using a temperature program. J. Chem. Phys. 140, 184115 (2014). https://doi.org/10.1063/1.4875476

  16. V. Imandi, A. Chatterjee, Estimating Arrhenius parameters using temperature programmed molecular dynamics. J. Chem. Phys. 145, 34104 (2016). https://doi.org/10.1063/1.4958834

  17. K.L. Ngai, Evidence of interaction between oxygen ions from conductivity relaxation and quasielastic light scattering data of yttria-stabilized zirconia, 2812 (2016)

    Google Scholar 

  18. M. Kilo, M.A. Taylor, C. Argirusis, G. Borchardt, R.A. Jackson, O. Schulz, M. Martin, M. Weller, Modeling of cation diffusion in oxygen ion conductors using molecular dynamics. Solid State Ion.S 175, 823–827 (2004). https://doi.org/10.1016/j.ssi.2004.09.059

  19. M.S. Khan, M.S. Islam, D.R. Bates, Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study. J. Mater. Chem. 8, 2299–2307 (1998). https://doi.org/10.1039/a803917h

    Article  Google Scholar 

  20. M. Kilo, C. Argirusis, G. Borchardt, R.A. Jackson, Oxygen diffusion in yttria stabilised zirconia—experimental results and molecular dynamics calculations (n.d.). https://doi.org/10.1039/b300151m

Download references

Acknowledgements

AC acknowledges support from Science and Engineering Research Board, Department of Science and Technology, Grant No. SB/S3/CE/022/2014, and Indian National Science Academy, Grant No. SP/YSP/120/2015/307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaipal, M., Chatterjee, A. (2020). Spatial Distribution of Oxygen-Vacancy Pairs and Oxygen Movement in Yttria-Stabilized Zirconia. In: Singh, S., Ramadesigan, V. (eds) Advances in Energy Research, Vol. 1. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-2666-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2666-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2665-7

  • Online ISBN: 978-981-15-2666-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics