Skip to main content

Copper Oxide Phase Change During Pulsed Laser Deposition of SrTiO3

  • Conference paper
  • First Online:
Advances in Energy Research, Vol. 1

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 570 Accesses

Abstract

The intrinsic nature of Cu2O to be p-type makes the n-type Cu2O formation difficult, thereby leading toward the heterojunction solar cells. The interface mismatching between Cu2O and the n-type layer in the cell limits its efficiency. Strontium titanate (SrTiO3) is an n-type semiconductor having minimal band offset with Cu2O and possess superior electric properties. SrTiO3 not only serves as an n-type layer in solar photovoltaic but also can work as a protective layer in Cu2O photoelectrochemical cell. Its conduction band lies in between the conduction band of Cu2O and hydrogen reduction potential. In this work, the synthesis of SrTiO3 via pulsed laser deposition (PLD) is discussed on the thermally oxidized Cu2O sheets. It is observed that Cu2O reduces to Cu in its equilibrium phase field during the deposition of SrTiO3 via PLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Raebiger, S. Lany, A. Zunger, Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 76, 045209 (2007). https://doi.org/10.1103/PhysRevB.76.045209

    Article  Google Scholar 

  2. A. Paracchino, J.C. Brauer, J.E. Moser, E. Thimsen, M. Grätzel, Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J. Phys. Chem. Lett. C 116, 7341–7350 (2012). https://doi.org/10.1021/jp301176y

    Article  Google Scholar 

  3. J. Luo, L. Steier, M.K. Son, M. Schreier, M.T. Mayer, M. Grätzel, Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016). https://doi.org/10.1021/acs.nanolett.5b04929

    Article  Google Scholar 

  4. D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J. Phys. Chem. Lett. C 118, 25320–25329 (2014). https://doi.org/10.1021/jp507039n

    Article  Google Scholar 

  5. Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang, Carbon-layer protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7, 1709–1717 (2013). https://doi.org/10.1021/nn3057092

    Article  Google Scholar 

  6. T. Minami, Y. Nishi, T. Miyata, Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium doped Cu2O sheet. Appl. Phys. Express 8, 022301 (2015). https://doi.org/10.7576/APEX.8.022301

    Article  Google Scholar 

  7. T. Minami, Y. Nishi, T. Miyata, J. Nomoto, High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl. Phys. Express 4, 062301 (2011). https://doi.org/10.1143/APEX.4.062301

    Article  Google Scholar 

  8. T. Minami, Y. Nishi, T. Miyata, Efficiency enhancement using a Zn1-x Gex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl. Phys. Express 9, 052301 (2016). https://doi.org/10.7567/APEX.9.052301

    Article  Google Scholar 

  9. A. Musa, T. Akomolafe, M. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51, 305–316 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X

    Article  Google Scholar 

  10. E.J. Tarsa, E.A. Hachfeld, F.T. Quinlan, J.S. Speck, Growth-related stress and surface morphology in homoepitaxial SrTiO3 films. Appl. Phys. Lett. 68, 490–492 (1996). https://doi.org/10.1063/1.116376

    Article  Google Scholar 

  11. W. Wei, Y. Dai, M. Guo, L. Yu, B. Huang, Density functional characterization of the electronic structure and optical properties of n-doped, La-doped, and n/La-codoped SrTiO3. J. Phys. Chem. Lett. C 113, 15046–15050 (2009). https://doi.org/10.1021/jp902567j

    Article  Google Scholar 

  12. B. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. Haeni, D. Schlom, W. Tian, X. Pan, F. Walker, R. McKee, Epitaxial La-doped SrTiO3 on silicon: a conductive template for epitaxial ferroelectrics on silicon. App, Phys. Lett. 80, 4801–4803 (2002). https://doi.org/10.1063/1.1484552

    Article  Google Scholar 

  13. M.L. Scullin, J. Ravichandran, C. Yu, M. Huijben, J. Seidel, A. Majumdar, R. Ramesh, Pulsed laser deposition-induced reduction of SrTiO3 crystals. Acta Mater. 58, 457–463 (2010). https://doi.org/10.1016/j.actamat.2009.09.024

    Article  Google Scholar 

  14. D. Tahir, S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J. Phys.: Condens. Matter. 24, 175002 (2012). https://doi.org/10.1088/0953-8984/24/17/175002

    Article  Google Scholar 

  15. W. Siemons, G. Koster, H. Yamamoto, T.H. Geballe, D.H. Blank, M.R. Beasley, Experimental investigation of electronic properties of buried hetero-interfaces of LaAlO3 on SrTiO3. Phys. Rev. B 76, 155111 (2007). https://doi.org/10.1103/PhysRevB.76.155111

    Article  Google Scholar 

  16. D. Keeble, B. Jalan, L. Ravelli, W. Egger, G. Kanda, S. Stemmer, Suppression of vacancy defects in epitaxial La-doped SrTiO3 films. Appl. Phys. Lett. 99, 232905 (2011). https://doi.org/10.1063/1.3664398

    Article  Google Scholar 

  17. W. Jo, G.C. Yi, T. Noh, D.K. Ko, Y. Cho, S.I. Kwun, Structural and electro-optical properties of laser ablated Bi4Ti3O12 thin films on SrTiO3 (100) and SrTiO3 (110). Appl. Phys. Lett. 61, 1516–1518 (1992). https://doi.org/10.1063/1.107534

    Article  Google Scholar 

  18. E. Choi, J. Kim, D. Cuong, J. Lee, Oxygen vacancies in SrTiO3, in 17th IEEE International Symposium on the Applications of Ferroelectrics (IEEE Press, New Mexico, 2008), pp. 1–2. https://doi.org/10.1109/isaf.2008.4693917

  19. A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, D. Winkler, Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007). https://doi.org/10.1103/PhysRevB.75.121404

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the Centre for Excellence in Nanoelectronics (IIT Bombay), National Centre for Photovoltaic Research and Education (supported by MNRE, India) and IRCC for providing the experimental facilities. KRB acknowledges IRCC IIT Bombay for providing funding through Grant No. 12IRCCSG014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Balasubramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, G., Singh, A.K., Maurya, S.K., Balasubramaniam, K.R. (2020). Copper Oxide Phase Change During Pulsed Laser Deposition of SrTiO3. In: Singh, S., Ramadesigan, V. (eds) Advances in Energy Research, Vol. 1. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-2666-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2666-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2665-7

  • Online ISBN: 978-981-15-2666-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics