Skip to main content

A Coupled Eulerian-Lagrangian Framework for the Modeling and Simulation of Turbulent Multiphase Flows

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Mixing and Reaction

Part of the book series: Heat and Mass Transfer ((HMT))

  • 836 Accesses

Abstract

Interfacial multiphase flows are challenging to simulate because they involve many spatio-temporal scales and discontinuous fluid properties. This chapter describes a new framework for simulating interfacial flows (with an emphasis on sprays) that is consistent and conservative. The framework is based on the coupling of point mass particles (PMPs) with an Eulerian grid. Three different simulation methods are derived by enforcing different levels of coupling between the PMPs and the Eulerian grid. We first develop an expression that relates the PMP velocity to the fluid velocity, and use this expression to define a methodology for tracking an arbitrary number of phases and scalars. Performance of this approach is demonstrated in the context of heated air blast atomization. Next, we derive a governing equation for the fluid velocity in the context of the PMP, and present a consistent and conservative framework for solving the multiphase Navier-Stokes equations. The chapter concludes with the development of a formulation for consistent and conservative large eddy simulation, with particular attention paid to the importance of closure models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Faeth, Structure and atomization properties of dense turbulent sprays, in Twenty-Third Symposium (International) on Combustion/The Combustion Institute, (1990), pp. 1345–1352

    Article  Google Scholar 

  2. G. Faeth, L.-P. Hsaing, P.-K. Wu, Structure and breakup properties of sprays. Int. J. Multiphas. Flow 21, 99–127 (1995)

    Article  MATH  Google Scholar 

  3. M. Gorokhovski, M. Herrmann, Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343–366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Shinjo, A. Umemura, Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. Int. J. Multiphas. Flow 36(7), 513–532 (2010)

    Article  Google Scholar 

  5. D. Zuzio, J. Estivalezes, P. Villedieu, G. Blanchard, Numerical simulation of primary and secondary atomization. C. R. Macanique 341, 15–25 (2013)

    Article  Google Scholar 

  6. F. Xiao, M. Dianat, J. McGurik, LES of turbulent liquid jet primary breakup in turbulent coaxial air flow. Int. J. Multiphas. Flow 60, 103–118 (2014)

    Article  MathSciNet  Google Scholar 

  7. T. Fansler, S. Parrish, Spray measurement technology: A review. Meas. Sci. Technol. 26, 01002 (2015)

    Article  Google Scholar 

  8. R. Reitz, Modeling atomization processes in high-pressure vaporizing sprays. Atomiz. Spray Technol. 3, 309–337 (1987)

    Google Scholar 

  9. P. O’Rourke and A. Amsden, The TAB method for numerical calculation of spray droplet breakup, in SAE Paper 872089 (1987)

    Google Scholar 

  10. P. Senecal, D. Schmidt, I. Nouar, C. Rutland, R. Reitz, M. Corradini, Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphas. Flow 25, 1073–1097 (1999)

    Article  MATH  Google Scholar 

  11. S. Apte, M. Gorokhovski, P. Moin, LES of atomizing spray with stochastic modeling of secondary breakup. Int. J. Multiphas. Flow 29, 1503–1522 (2003)

    Article  MATH  Google Scholar 

  12. M. Gorokhovski, V. Saveliev, Analysis of Kolmogorov’s model of breakup and its application to Lagrangain computation of liquid sprays under air-blast atomization. Phys. Fluids 15(1), 184–191 (2003)

    Article  MATH  Google Scholar 

  13. S. Sazhin, S. Martynov, T. Kristyadi, C. Crua, M. Heikal, Diesel fuel spray penetration, heating, evaporation and ignition: Modelling versus experimentation. Int. J. Eng. Syst. Model. Simul. 1(1), 1–19 (2008)

    Google Scholar 

  14. A. Iannetti and J. Moder, Comparing spray characteristics from Reynolds averaged Navier-Stokes (RANS) national combustion code (NCC) calculations against experimental data for a turbulent reacting flow, in 48th Aerospace Sciences Meeting, (AIAA–2010–578, 2010)

    Google Scholar 

  15. T. Menard, S. Tanguy, A. Berlemont, Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiphas. Flow 33(5), 510–524 (2007)

    Article  Google Scholar 

  16. O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227(18), 8395–8416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Pai, O. Desjardins, H. Pitsch, Detailed simulations of primary breakup of turbulent liquid jets in crossflow Tech. Rep. Cent. Turbul. Res. (2008)

    Google Scholar 

  18. R. Lebas, T. Menard, P. Beau, A. Berlemont, F. Demoulin, Numerical simulation of primary break-up and atomization: DNS and modelling study. Int. J. Multiphas. Flow 35, 247–260 (2008)

    Article  Google Scholar 

  19. D. Fuster, A. Bague, T. Boeck, L. Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Int. J. Multiphas. Flow 35, 550–565 (2009)

    Article  Google Scholar 

  20. M. Herrmann, Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. J. Eng. Gas Turb. Power 132, 061506 (2010)

    Article  Google Scholar 

  21. B. Duret, J. Reveillon, T. Menard, F. Demoulin, Improving primary atomization modeling through DNS of two-phase flows. Int. J. Multiphas. Flow 55, 130–137 (2013)

    Article  Google Scholar 

  22. C. Zhu, M. Ertl, B. Weigand, Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence. Phys. Fluids 25, 083102 (2013)

    Article  Google Scholar 

  23. K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, P. Moin, Large-eddy simulation of gas turbine combustors. Tech. Rep. Cent. Turbul. Res. (2001)

    Google Scholar 

  24. F. Ham, S. Apte, G. Iaccarino, X. Wu, M. Herrmann, G. Constantinescu, K. Mahesh, P. Moin, Unstructured LES of reacting multiphase flows in realistic gas turbine combustors. Tech. Rep. Cent. Turbul. Res. (2003)

    Google Scholar 

  25. R. Kurose, O. Desjardins, M. Nakamura, F. Akamatsu, H. Pitsch, Numerical simulations of spray flames. Tech. Rep. Cent. Turbul. Res. (2004)

    Google Scholar 

  26. T. Lederlin, H. Pitsch, Large-eddy simulation of an evaporating and reacting spray, Tech. Rep. Cent. Turbul. Res. (2008)

    Google Scholar 

  27. M. Chrigui, A. Masri, A. Sadiki, J. Janicka, Large eddy simulation of a polydisperse ethanol spray flame. Flow Turbul. Combust 90, 813–832 (2013)

    Article  Google Scholar 

  28. A. Irannejad, F.A. Jaberi, Large eddy simulation of turbulent spray breakup and evaporation. Int. J. Multiphas. Flow 61, 108–128 (2014)

    Article  MathSciNet  Google Scholar 

  29. C. Gong, M. Jangi, T. Lucchini, G. D’Errico, X.-S. Bai, Large eddy simulation of air entrainment and mixing in reacting and non-reacting diesel sprays. Flow Turbul. Combust. 93, 385–404 (2014)

    Article  Google Scholar 

  30. A. Irannejad, A. Banaeizadeh, F. Jaberi, Large eddy simulation of turbulent spray combustion. Combust. Flame 162, 431–450 (2015)

    Article  Google Scholar 

  31. M. Turner, S. Sazhin, J. Healey, C. Crua, S. Martynov, A breakup model for transient diesel fuel sprays. Fuel 97, 288–305 (2012)

    Article  Google Scholar 

  32. E.A. Wenzel, S.C. Garrick, A point-mass particle method for the simulation of multiphase flows on an Eulerian mesh, J. Comput. Phys. 397, 108835 (2019)

    Google Scholar 

  33. M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. D.J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 227(3), 759–794 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  36. A.M. Tartakovsky, A. Panchenko, Pairwise force smoothed particle hydrodynamics model for multiphase flow: Surface tension and contact line dynamics. J. Comput. Phys. 305, 1119–1146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  38. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow. Phys. Fluids A 114(1), 146–159 (1994)

    MATH  Google Scholar 

  40. M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Olsson, G. Kreiss, A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow II. J. Comput. Phys. 225(1), 785–807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227(4), 2674–2706 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. O. Desjardins, H. Pitsch, A spectrally refined interface approach for simulating multiphase flows. J. Comput. Phys. 20, 1658–1677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Enright, F. Losasso, R. Fedkiw, A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479–490 (2005)

    Article  MathSciNet  Google Scholar 

  47. Z. Li, F.A. Jaberi, T.I.-P. Shih, A hybrid Lagrangian-Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. Int. J. Numer. Meth. Fluids 56, 2271–2300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Bermejo, J.L. Prieto, A semi-Lagrangian particle level set finite element method for interface problems. SIAM J. Sci. Comput. 35(4), A1815–A1846 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Weymouth, D. Yue, Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229(8), 2853–2865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Cervone, S. Manservisi, R. Scardovelli, An optimal constrained approach for divergence-free velocity interpolation and multilevel VOF method. Comput. Fluids 47, 101–114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Owkes, O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 270, 587–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Owkes, O. Desjardins, A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows. J. Comput. Phys. 332, 21–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Moretti, Computation of flows with shocks. Ann. Rev. Fluid Mech. 19, 313–337 (1987)

    Article  Google Scholar 

  54. S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  55. D.J. Torres, J.U. Brackbill, The point-set method: Front-tracking without connectivity. J. Comput. Phys. 165, 620–644 (2000)

    Article  MATH  Google Scholar 

  56. J.P. Gois, A. Nakano, L.G. Nonato, G.C. Buscaglia, Front tracking with moving-least-squares surfaces. J. Comput. Phys. 227, 9643–9669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    Article  MATH  Google Scholar 

  58. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  59. F.H. Harlow, The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3, 319–343 (1963)

    Google Scholar 

  60. J. Liu, S. Koshizuka, Y. Oka, A hybrid particle-mesh method for viscous, incompressible, multiphase flows, J. Comput. Phys. 202(1), 65–93 (2005)

    Article  MATH  Google Scholar 

  61. E. Edwards, R. Bridson, A high-order accurate particle-in-cell method. Int. J. Numer. Meth. Eng. 90, 1073–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Morris, Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Meth. Fl. 33, 333–353 (2000)

    Article  MATH  Google Scholar 

  63. N. Nishio, K. Yamana, Y. Yamaguchi, T. Inaba, K. Kuroda, T. Nakajima, K. Ohno, H. Fujimura, Large-scale SPH simulations of droplet impact onto a liquid surface up to the consequent formation of Worthington jet. Int. J. Numer. Methods Fluids 63(12), 1435–1447 (2010)

    Google Scholar 

  64. F.V. Sirotkin, J.J. Yoh, A new particle method for simulating breakup of liquid jets. J. Comput. Phys. 231, 1650–1674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. H. Lei, C.J. Mundy, G. Schenter, Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics. J. Chem. Phys. 142, 194504 (2015)

    Article  Google Scholar 

  66. P. Cleary, J. Monaghan, Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 148, 227–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Jain, R. Prakash, G. Tomar, R. Ravikrishna, Secondary breakup of a drop at moderate Weber numbers. Proc. R. Soc. A 471, 20140930 (2018)

    Article  Google Scholar 

  68. E.A. Wenzel. Methods for the Modeling and Simulation of Sprays and Other Interfacial Flows. Ph.D. thesis, University of Minnesota - Twin Cities (2019)

    Google Scholar 

  69. M. Rudman, A volume-tracking method for incompressible multifluid flows with large density variations. Int. J. Numer. Methods Fluids 28(2), 357–378 (1998)

    Article  MATH  Google Scholar 

  70. T. Dreeben, S. Pope, Probability density function and Reynolds-stress modeling of near-wall turbulent flows. Phys. Fluids 9, 154–163 (1997)

    Article  Google Scholar 

  71. S. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35), 2–23 (2003)

    Google Scholar 

  72. M. Herrmann, M. Gorokhovski, A large eddy simulation subgrid model for turbulent phase interface dynamics, in Proceedings of the 11th Triennial International Conference on Liquid Atomization and Spray Systems (Vail, CO, USA, 2009)

    Google Scholar 

  73. J. Larocque, S. Vincent, D. Lacanette, P. Lubin, J.-P. Caltagirone, Parametric study of LES subgrid terms in a turbulent phase separation flow. Int. J. Heat Fluid Fl. 31, 536–544 (2010)

    Article  Google Scholar 

  74. J. Chesnel, J. Reveillon, F. Demoulin, T. Menard, Subgrid analysis of liquid jet atomization. Atomization Spray 21(1), 41–67 (2011)

    Article  Google Scholar 

  75. M. Herrmann, M. Gorokhovski, An outline of an LES subgrid model for liquid/gas phase interface dynamics, in Proceedings of the 2008 CTR Summer Program (Stanford CA, 2008), pp. 171–181

    Google Scholar 

  76. A. Scotti, C. Meneveau, A fractal model for large eddy simulation of turbulent flow. Physica D 127, 198–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  77. D. Kedelty, J. Uglietta, M. Herrmann, A volume of fluid dual scale approach for modeling turbulent liquid/gas phase interfaces, in Proceedings of the 29th Annual Conference on Liquid Atomization and Spray Systems (Atlanta, GA, USA, 2017)

    Google Scholar 

  78. S. Pope, Simple models of turbulent flows. Phys. Fluids 23, 011301 (2011)

    Article  MATH  Google Scholar 

  79. D. Haworth, S. Pope, A generalized Langevin model for turbulent flows. Phys. Fluids 29(2), 387–405 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  80. E.A. Wenzel, S.C. Garrick, Finite particle methods for computing interfacial curvature in volume of fluid simulations. At. Sprays 28(2), 141–160 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C. Garrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wenzel, E.A., Garrick, S.C. (2020). A Coupled Eulerian-Lagrangian Framework for the Modeling and Simulation of Turbulent Multiphase Flows. In: Livescu, D., Nouri, A., Battaglia, F., Givi, P. (eds) Modeling and Simulation of Turbulent Mixing and Reaction. Heat and Mass Transfer. Springer, Singapore. https://doi.org/10.1007/978-981-15-2643-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2643-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2642-8

  • Online ISBN: 978-981-15-2643-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics