Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Among the extensively used traditional methods for studying the turbid tissue-like phase-inhomogeneous media, an important place belongs to matrix polarimetry—based diagnosis of optically anisotropic biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuchin, V., Wang, L., Zimnjakov, D.: Optical polarization in biomedical applications. Springer, New York, USA (2006)

    Book  Google Scholar 

  2. Chipman, R.: Polarimetry. In: Bass, M. (eds.) Handbook of Optics: Vol. I—Geometrical and Physical Optics, Polarized Light, Components and Instruments, pp. 22.1–22.37. McGraw-Hill Professional, New York (2010)

    Google Scholar 

  3. Ghosh, N., Wood, M., Vitkin, A.: Polarized light assessment of complex turbid media such as biological tissues via Mueller matrix decomposition. In: Tuchin V (ed.) Handbook of Photonics for Biomedical Science, pp. 253–282. CRC Press, Taylor & Francis Group, London (2010)

    Google Scholar 

  4. Jacques, S.: Polarized light imaging of biological tissues. In: Boas, D., Pitris, C., Ramanujam, N. (eds.) Handbook of biomedical optics, pp. 649–669. CRC Press, Boca Raton, London, New York (2011)

    Chapter  Google Scholar 

  5. Ghosh, N.: Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  6. Swami, M., Patel, H., Gupta, P.: Conversion of 3 × 3 Mueller matrix to 4 × 4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    Article  ADS  Google Scholar 

  7. Layden, D., Ghosh, N., Vitkin, A.: Quantitative polarimetry for tissue characterization and diagnosis. In: Wang, R., Tuchin, V. (eds.) Advanced Biophotonics: Tissue Optical Sectioning, pp. 73–108. CRC Press, Taylor & Francis Group, Boca Raton, London, New York. (2013)

    Google Scholar 

  8. Vo-Dinh, T.: Biomedical Photonics Handbook, 3 vol. set, 2nd edn. CRC Press, Boca Raton (2014)

    Google Scholar 

  9. Vitkin, A., Ghosh, N., Martino, A.: Tissue polarimetry. In: Andrews, D. (ed.) Photonics: Scientific Foundations, Technology and Applications, 4th edn, pp. 239–321. Wiley, Hoboken, New Jersey (2015)

    Chapter  Google Scholar 

  10. Tuchin, V.: Tissue optics: light scattering methods and instruments for medical diagnosis, 2nd edn. SPIE Press, Bellingham, Washington, USA (2007)

    Book  Google Scholar 

  11. Bickel, W., Bailey, W.: Stokes vectors, Mueller matrices, and polarized scattered light. Am. J. Phys. 53(5), 468–478 (1985)

    Article  ADS  Google Scholar 

  12. Doronin, A., Macdonald, C., Meglinski, I.: Propagation of coherent polarized light in turbid highly scattering medium. J. Biomed. Opt. 19(2), 025005 (2014)

    Article  ADS  Google Scholar 

  13. Doronin, A., Radosevich, A., Backman, V., Meglinski, I.: Two electric field Monte Carlo models of coherent backscattering of polarized light. J. Opt. Soc. Am. A 31(11), 2394 (2014)

    Article  ADS  Google Scholar 

  14. Arun Gopinathan, P., Kokila, G., Jyothi, M., Ananjan, C., Pradeep, L., Humaira Nazir, S.: Study of collagen birefringence in different grades of oral squamous cell carcinoma using picrosirius red and polarized light microscopy. Scientifica 802980 (2015)

    Google Scholar 

  15. Rich, L., Whittaker, P.: Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distriburuon. Braz. J. Morphol. Sci, (2005). www.patologia.medicina.ufrj.br

  16. Bancelin, S., Nazac, A., Ibrahim, B.H., et al.: Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging. Opt. Express 22(19), 22561–22574 (2014)

    Article  ADS  Google Scholar 

  17. Ushenko, A., Pishak, V.: Laser polarimetry of biological tissue: principles and applications. In: Tuchin, V. (ed.) Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, pp. 93–138 (2004)

    Google Scholar 

  18. Angelsky, O., Ushenko, A., Ushenko, Y., Pishak, V., Peresunko, A.: Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues. In: Handbook of Photonics for Biomedical Science, pp. 283–322 (2010)

    Google Scholar 

  19. Ushenko, Y., Boychuk, T., Bachynsky, V., Mincer, O.: Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches. In: Tuchin, V (ed.) Handbook of Coherent-Domain Optical Methods. Springer (2013)

    Google Scholar 

  20. Angelsky, O., Tomka, Y., Ushenko, A., Ushenko, Y., Yermolenko, S.: 2-D tomography of biotissue images in pre-clinic diagnostics of their pre-cancer states. Proc. SPIE 5972, 158–162 (2005)

    ADS  Google Scholar 

  21. Angelsky, O., Ushenko, A., Ushenko, Y.: Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes. Phys. Med. Biol. 50(20), 4811–4822 (2005)

    Article  Google Scholar 

  22. Ushenko, Y., Ushenko, V., Dubolazov, A., Balanetskaya, V., Zabolotna, N.: Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Opt. Spectrosc. 112(6), 884–892 (2012)

    Article  ADS  Google Scholar 

  23. Ushenko, V., Dubolazov, O., Karachevtsev, A.: Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Appl. Opt. 53(10), B128 (2016)

    Article  Google Scholar 

  24. Ushenko, Y., Koval, G., Ushenko, A., Dubolazov, O., Ushenko, V., Novakovskaia, O.: Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21(7), 071116 (2016)

    Article  ADS  Google Scholar 

  25. Ushenko, A., Dubolazov, A., Ushenko, V., Novakovskaya, O.: Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations. J. Biomed. Opt. 21(7), 071110 (2016)

    Article  ADS  Google Scholar 

  26. Prysyazhnyuk, V., Ushenko, Y., Dubolazov, A., Ushenko, A., Ushenko, V.: Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 55(12), B126 (2016)

    Article  Google Scholar 

  27. Azzam, R.: Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus. J. Opt. Soc. Am. 68(12), 1756 (1978)

    Article  ADS  Google Scholar 

  28. Jones, R.: A new, “Calculus for the Treatment of Optical Systems VII Properties of the N-Matrices”. J. Opt. Soc. Am. 38(8), 671 (1948)

    Article  ADS  Google Scholar 

  29. Ortega-Quijano, N., Arce-Diego, J.: Mueller matrix differential decomposition. Opt. Lett. 36(10), 1942–1944 (2011)

    Article  ADS  Google Scholar 

  30. Devlaminck, V.: Physical model of differential Mueller matrix for depolarizing uniform media. J. Opt. Soc. Am. A 30(11), 2196 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ossikovski, R., Devlaminck, V.: General criterion for the physical reliability of the differential Mueller matrix. Opt. Lett. 39(5), 1216 (2014)

    Article  ADS  Google Scholar 

  32. Devlaminck, V., Ossikovski, R.: Uniqueness of the differential Mueller matrix of uniform homogeneous media. Opt. Lett. 39(11), 3149 (2014)

    Article  ADS  Google Scholar 

  33. Ossikovski, R., Arteaga, O.: Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Lett. 39(15), 4470 (2014)

    Article  ADS  Google Scholar 

  34. Ossikovski, R.: Differential matrix formalism for depolarizing anisotropic media. Opt. Lett. 36(12), 2330 (2011)

    Article  ADS  Google Scholar 

  35. Ushenko, V., Pavlyukovich, N., Trifonyuk, L.: Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. Int. J. Opt. 2013, 1–7 (2013)

    Article  Google Scholar 

  36. Pérez-Cárceles, M., Noguera, J., Jiménez, J., Martı́nez, P., Luna, A., Osuna, E.: Diagnostic efficacy of biochemical markers in diagnosis post-mortem of ischaemic heart disease. Forensic Sci. Int. 142(1), 1–7 (2004)

    Article  Google Scholar 

  37. Martínez Díaz, F., Rodríguez-Morlensín, M., Pérez-Cárceles, M., Noguera, J., Luna, A., Osuna, E.: Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage. Histol. Histopathol. 20(2), 475–481 (2005)

    Google Scholar 

  38. Göksedef, B.P.Ç., Akbayır, Ö., Çorbacıoğlu, A., Güraslan, H., Şencan, F., Erol, O., Çetin, A.: J. Turk Ger Gynecol. Assoc. 13(2), 106–110 (2012)

    Google Scholar 

  39. Sharon, A.S., Ritu, S.B., Thomas, E.R., et al.: Striae and pelvic relaxation: two disorders of connective tissue with strong association. J. Invest. Dermatol. 126, 1745–1748 (2006)

    Article  Google Scholar 

  40. Ushenko, VA., Gavrylyak, M.S.: Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy. Proc. SPIE 8812, 88120Y (2013)

    Google Scholar 

  41. Ushenko, V.A., Gorsky, M.P.: Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Opt. Spectrosc. 115, 290–297 (2013)

    Article  ADS  Google Scholar 

  42. Ushenko, V.A., Dubolazov, A.V.: Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images. Proc. SPIE 8856, 88562D (2013)

    Article  ADS  Google Scholar 

  43. Ushenko, V.A., Pavlyukovich, N.D., Trifonyuk, L.: Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. Int. J. Opt. 683174, 2013 (2013)

    Google Scholar 

  44. Ushenko, V.A.: Complex degree of mutual coherence of biological liquids. Proc. SPIE 8882, 88820V (2013)

    Article  ADS  Google Scholar 

  45. Ushenko, Y.A., et al.: Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes. Appl. Opt. 55, B113–B119 (2016)

    Article  Google Scholar 

  46. Tervo, J., Setala, T., Friberg, A.: Degree of coherence for electromagnetic fields. Opt. Expr. 11, 1137–1143 (2003)

    Article  ADS  Google Scholar 

  47. Tervo, J., Setala, T., Friberg, A.: Two-point Stokes parameters: interpretation and properties. Opt. Lett. 34, 3074–3076 (2009)

    Article  ADS  Google Scholar 

  48. Lu, S.Y., Chipman, R.A.: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996)

    Article  ADS  Google Scholar 

  49. Guo, Y., Zeng, N., He, H., Yun, T., Du, E., Liao, R., Ma, H.: A study on forward scattering Mueller matrix decomposition in anisotropic medium. Opt. Exp. 21, 18361–18370 (2013)

    Article  ADS  Google Scholar 

  50. Ushenko, Y.A., et al.: Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues. Quantum. Electron. 42, 727–732 (2012)

    Article  ADS  Google Scholar 

  51. Deboo, B., Sasian, J., Chipman, R.A.: Degree of polarization surfaces and maps for analysis of depolarization. Opt. Exp 12, 4941–4958 (2004)

    Article  ADS  Google Scholar 

  52. Cassidy, L.: Basic concepts of statistical analysis for surgical research. J. Surg. Res. 128(2), 199–206 (2005)

    Article  Google Scholar 

  53. Davis, C.S.: Statistical Methods of the Analysis of Repeated Measurements. Springer, New York (2002)

    MATH  Google Scholar 

  54. Petrie, A., Sabin, C.: Medical Statistics at a Glance. Wiley, Chichester, UK (2009)

    MATH  Google Scholar 

  55. Buscemi, I.C., Guyot, S.: Near real-time polarimetric imaging system. J. Biomed. Opt. 18, 116002 (2013)

    Article  ADS  Google Scholar 

  56. Manhas, S., Vizet, J., Deby, S., Vanel, J.C., Boito, P., Verdier, M., Pagnoux, D.: Demonstration of full 4 × 4 Mueller polarimetry through an optical fiber for endoscopic applications. Opt. Exp. 23, 3047–3054 (2015)

    Article  ADS  Google Scholar 

  57. Pierangelo, A., Manhas, S., Benali, A., Fallet, C., Totobenazara, J.L., Antonelli, M.R., Validire, P.: Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 18, 046014 (2013)

    Article  ADS  Google Scholar 

  58. Vladimir, Z., Wang, J.B., Yan, X.H.: Human blood plasma crystal and molecular biocolloid textures—dismetabolism and genetic breaches. Nat. Sci. J. Xiangtan Univ. 23, 118–127 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Bachinskyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachinskyi, V.T., Wanchulyak, O.Y., Ushenko, A.G., Ushenko, Y.A., Dubolazov, A.V., Meglinski, I. (2020). Introduction. In: Polarization Correlometry of Scattering Biological Tissues and Fluids. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2628-2_1

Download citation

Publish with us

Policies and ethics