Skip to main content

The Role of Yeast and Molds in Dairy Industry: An Update

  • Chapter
  • First Online:
Dairy Processing: Advanced Research to Applications

Abstract

Over the past few decades, understanding of yeasts and molds diversity in environment has grown appreciably. Due to high adaptation capability of these fungal members, they are ubiquitously found in the environment. Decades of research helped humans to recognize and differentiate them into good or bad ones with their ability for use as food products. During evaluation, milk or their structural ingredients were found as one of the efficient matrices to extract profitable things rather than signifying them as illness or spoilage entity. Over the past few years, commercial cultures of yeast has become increasingly popular to produce fermented milk, cheese and ethanol from whey and lactose solutions. Several mold species also find their use in the development of different dairy products. Different mold species are used for ripening of various types of cheese (e.g., Roquefort, Camembert), enzyme production, and dairy waste management. However, fungal spoilage is among one of the major challenges for food and dairy industry and continues to grow with increased demand and production of food and dairy products. Systematic approaches like application of good manufacturing process, new biopreservation techniques, rapid detection methods, and upgraded packaging methods were surely able to reduce their inhibitory effects in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aljewicz M, Cichosz G (2015) Protective effects of Lactobacillus cultures in Dutch-type cheese-like products. LWT-Food Sci Technol 63(1):52–56

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Atalar I (2019) Functional kefir production from high pressure homogenized hazelnut milk. LWT 107:256–263

    Article  CAS  Google Scholar 

  • Awasti N (2019) Influence of sporulation and germination behavior of Bacillus Licheniformis on microbial quality of skim milk powder. PhD thesis

    Google Scholar 

  • Awasti N, Tomar SK, Pophaly SD, Lule VK, Singh TP, Anand S (2016) Probiotic and functional characterization of bifidobacteria of Indian human origin. J Appl Microbiol 120(4):1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Awasti N, Anand S, Djira G (2019) Sporulating behavior of Bacillus licheniformis strains influences their population dynamics during raw milk holding. J Dairy Sci 102(7):6001–6012

    Article  CAS  PubMed  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Bailey RB, Benitez T, Woodward A (1982) Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Appl Environ Microbiol 44(3):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beletsiotis E, Ghikas D, Kalantzi K (2011) Incorporation of microbiological and molecular methods in HACCP monitoring scheme of molds and yeasts in a Greek dairy plant: a case study. Procedia Food Sci 1:1051–1059

    Article  Google Scholar 

  • Bengoa AA, Iraporda C, Garrote GL, Abraham AG (2019) Kefir micro-organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol 126:686–700

    Article  CAS  PubMed  Google Scholar 

  • Beniwal A, Semwal A, Navani NK (2019) Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Front Microbiol 10:502

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Mills DA (2013) Facility-specific “house” microbiome drives microbial landscapes of artisan cheesemaking plants. Appl Environ Microbiol 79(17):5214–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97

    Article  CAS  PubMed  Google Scholar 

  • Brandão RL, Rosa JCC, Nicoli JR, Almeida MVS, do Carmo AP, Queiros HT, Castro IM (2014) Investigating acid stress response in different Saccharomyces strains. J Mycol 2014:9

    Google Scholar 

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol 26(9–10):771–780

    Article  CAS  PubMed  Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  • Buckow R, Chandry PS, Ng SY, McAuley CM, Swanson BG (2014) Opportunities and challenges in pulsed electric field processing of dairy products. Int Dairy J 34(2):199–212

    Article  CAS  Google Scholar 

  • Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275

    Article  CAS  PubMed  Google Scholar 

  • Campbell C, Nanjundaswamy AK, Njiti V, Xia Q, Chukwuma F (2016) Value-added probiotic development by high-solid fermentation of sweet potato with Saccharomyces boulardii. Food Sci Nutr 4:532–533

    Google Scholar 

  • Cantor MD, van den Tempel T, Hansen TK, Ardö Y (2017) Blue cheese. In: Cheese. Academic, Cambridge, pp 929–954

    Chapter  Google Scholar 

  • Carreira A, Ferreira LM, Loureiro V (2001) Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 67(8):3463–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas E, De Ancos B, Valderrama MJ, Cano P, Peinado JM (2004) Pentadiene production from potassium sorbate by osmotolerant yeasts. Int J Food Microbiol 94(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Cot M, Loret MO, François J, Benbadis L (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res 7(1):22–32

    Article  CAS  PubMed  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria–potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380

    Article  CAS  Google Scholar 

  • de Oliveira TM, de Fátima Ferreira Soares N, Pereira RM, de Freitas Fraga K (2007) Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese conservation. Packag Technol Sci 20(2):147–153

    Article  CAS  Google Scholar 

  • Delavenne E, Cliquet S, Trunet C, Barbier G, Le Blay G (2015) Characterization of the antifungal activity of Lactobacillus harbinensis K. V9. 3.1 Np and Lactobacillus rhamnosus K. C8. 3.1 I in yogurt. Food Microbiol 45:10–17

    Article  CAS  PubMed  Google Scholar 

  • Desmasures N (2014) Mold-ripened varieties. In: Encyclopedia of food microbiology, vol 1, pp 409–415

    Google Scholar 

  • Dragone G, Mussatto SI, Oliveira JM, Teixeira JA (2009) Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem 112(4):929–935

    Article  CAS  Google Scholar 

  • Evert-Arriagada K, Hernández-Herrero MM, Guamis B, Trujillo AJ (2014) Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT-Food Sci Technol 55(2):498–505

    Article  CAS  Google Scholar 

  • Fadda ME, Mossa V, Pisano MB, Deplano M, Cosentino S (2004) Occurrence and characterization of yeasts isolated from artisanal Fiore Sardo cheese. Int J Food Microbiol 95(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • FAO, W. IFAD (2012) The state of food insecurity in the world, p 65

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP, & WHO (2017) The state of food security and nutrition in the world 2017. Building resilience for peace and food security

    Google Scholar 

  • FDA (2015) ICFSAN/Office of Food Additive Safety. GRAS notice natamycin. Published: 6 November 2015. Response letter GRAS notice no. GRN 000578

    Google Scholar 

  • Feijoo-Siota L, Blasco L, Luis Rodriguez-Rama J, Barros-Velázquez J, de Miguel T, Sánchez-Pérez A, Villa TG (2014) Recent patents on microbial proteases for the dairy industry. Recent Adv DNA Gene Seq 8(1):44–55

    CAS  PubMed  Google Scholar 

  • Fleet GH (1990) Yeasts in dairy products. J Appl Bacteriol 68(3):199–211

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich-Wyder MT, Arias-Roth E, Jakob E (2019) Cheese yeasts. Yeast 36(3):129–141

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara H (2006) Kluyveromyces lactis—a retrospective. FEMS Yeast Res 6(3):323–324

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier AJJF, Janssen Pharmaceutica NV (2011) Synergistic antifungal DDAC compositions. US Patent 8,008,230 B2

    Google Scholar 

  • Garnier L, Valence F, Mounier J (2017) Diversity and control of spoilage fungi in dairy products: an update. Microorganisms 5(3):42

    Article  PubMed Central  CAS  Google Scholar 

  • Goli A, Shamiri A, Khosroyar S, Talaiekhozani A, Sanaye R, Azizi K (2019) A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J Environ Treat Tech 6(1):113–141

    Google Scholar 

  • Gougouli M, Kalantzi K, Beletsiotis E, Koutsoumanis KP (2011) Development and application of predictive models for fungal growth as tools to improve quality control in yogurt production. Food Microbiol 28(8):1453–1462

    Article  PubMed  Google Scholar 

  • Guimarães PM, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28(3):375–384

    Article  PubMed  CAS  Google Scholar 

  • Hocking AD, Faedo M (1992) Fungi causing thread mould spoilage of vacuum packaged cheddar cheese during maturation. Int J Food Microbiol 16(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss JH, Werner BG, Lee EY (2006) Addition of carbon dioxide to dairy products to improve quality: a comprehensive review. Compr Rev Food Sci Food Saf 5(4):158–168

    Article  CAS  Google Scholar 

  • Huis in't Veld JH (1996) Microbial and biochemical spoilage of foods: an overview. Int J Food Microbiol 33(1):1–18

    Article  Google Scholar 

  • Inglin RC, Stevens MJ, Meile L, Lacroix C, Meile L (2015) High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J Microbiol Methods 114:26–29

    Article  CAS  PubMed  Google Scholar 

  • Irlinger F, Helinck S, Jany J-L (2017) Secondary and adjunct cultures. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW (eds) Cheese. Chemistry, physics and microbiology. GBR: Elsevier, Academic, Cambridge, pp 273–300

    Google Scholar 

  • Ishtar Snoek IS, Yde Steensma H (2007) Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast 24(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Jodral M, Liñan E, Acosta I, Gallego C, Rojas F, Bentabol A (1993) Mycoflora and toxigenic Aspergillus flavus in Spanish milks. Int J Food Microbiol 18(2):171–174

    Article  CAS  PubMed  Google Scholar 

  • Karaolis C, Botsaris G, Pantelides I, Tsaltas D (2013) Potential application of Saccharomyces boulardii as a probiotic in goat’s yoghurt: survival and organoleptic effects. Int J Food Sci Technol 48(7):1445–1452

    Article  CAS  Google Scholar 

  • Korukluoglu M, Sahan Y, Yigit A (2006) The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann Microbiol 56(4):325–330

    Article  CAS  Google Scholar 

  • Kosikowski FV, Wzorek W (1977) Whey wine from concentrates of reconstituted acid whey powder. J Dairy Sci 60(12):1982–1986

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Dimitropoulou S, Kanellaki M, Marchant R, Nigam P, Banat IM, Koutinas AA (2002a) High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour Technol 82(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Kourkoutas Y, Psarianos C, Koutinas AA, Kanellaki M, Banat IM, Marchant R (2002b) Continuous whey fermentation using kefir yeast immobilized on delignified cellulosic material. J Agric Food Chem 50(9):2543–2547

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha JP, Srivastava VC, Mall ID (2010) Treatment of dairy wastewater by inorganic coagulants: parametric and disposal studies. Water Res 44(20):5867–5874

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51:442–452

    Article  CAS  PubMed  Google Scholar 

  • Lavoie K, Touchette M, St-Gelais D, Labrie S (2012) Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci Technol 92(5):455–468

    Article  CAS  PubMed  Google Scholar 

  • Ledenbach LH, Marshall RT (2009) Microbiological spoilage of dairy products. In: Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 41–67

    Chapter  Google Scholar 

  • Leuschner RG, Heidel M, Hammes WP (1998) Histamine and tyramine degradation by food fermenting microorganisms. Int J Food Microbiol 39(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Linares DM, del Río B, Ladero V, Martínez N, Fernández M, Martín MC, Álvarez MA (2012) Factors influencing biogenic amines accumulation in dairy products. Front Microbiol 3:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling KC (2008) Whey to ethanol: a biofuel role for dairy cooperatives? USDA rural development research report 214

    Google Scholar 

  • Loureiro V, Querol A (1999) The prevalence and control of spoilage yeasts in foods and beverages. Trends Food Sci Technol 10(11):356–365

    Article  CAS  Google Scholar 

  • Mainville I, Montpetit D, Durand N, Farnworth ER (2001) Deactivating the bacteria and yeast in kefir using heat treatment, irradiation and high pressure. Int Dairy J 11(1–2):45–49

    Article  Google Scholar 

  • Marín P, Palmero D, Jurado M (2015) Occurrence of moulds associated with ovine raw milk and cheeses of the Spanish region of Castilla La Mancha. Int J Dairy Technol 68(4):565–572

    Article  Google Scholar 

  • Martin H, Maris P (2012) Synergism between hydrogen peroxide and seventeen acids against six bacterial strains. J Appl Microbiol 113(3):578–590

    Article  CAS  PubMed  Google Scholar 

  • Mayoral MB, Martín R, Sanz A, Hernández PE, González I, García T (2005) Detection of Kluyveromyces marxianus and other spoilage yeasts in yoghurt using a PCR-culture technique. Int J Food Microbiol 105(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16(18):2202–2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehaia MA, Cheryan M (1990) Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor. Bioprocess Eng 5(2):57–61

    Article  CAS  Google Scholar 

  • Minervini F, Montagna MT, Spilotros G, Monaci L, Santacroce MP, Visconti A (2001) Survey on mycoflora of cow and buffalo dairy products from southern Italy. Int J Food Microbiol 69(1–2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Landaud S, Bonnarme P, Swennen D (2015) Growth and adaptation of microorganisms on the cheese surface. FEMS Microbiol Lett 362:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1989) Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene 85(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda Y, Nakamura K (2009) Production of ethanol from the mixture of beet molasses and cheese whey by a 2-deoxyglucose-resistant mutant of Kluyveromyces marxianus. FEMS Yeast Res 9(5):742–748

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, vol 519. Springer, New York

    Book  Google Scholar 

  • Porwal HJ, Mane AV, Velhal SG (2015) Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Res Ind 9:1–15

    Article  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    Article  CAS  Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4(2):135–156

    Article  CAS  Google Scholar 

  • Resa CPO, Jagus RJ, Gerschenson LN (2014) Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control 35(1):101–108

    Article  CAS  Google Scholar 

  • Rivas J, Prazeres AR, Carvalho F (2011) Aerobic biodegradation of precoagulated cheese whey wastewater. J Agric Food Chem 59(6):2511–2517

    Article  CAS  PubMed  Google Scholar 

  • Roig-Sagués AX, Molina AP, Hernández-Herrero M (2002) Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. Eur Food Res Technol 215(2):96–100

    Article  CAS  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16

    Article  CAS  PubMed  Google Scholar 

  • Rysstad G, Kolstad J (2006) Extended shelf life milk—advances in technology. Int J Dairy Technol 59(2):85–96

    Article  Google Scholar 

  • Sazawal S, Hiremath G, Dhingra U, Malik P, Deb S, Black RE (2006) Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis 6(6):374–382

    Article  PubMed  Google Scholar 

  • Sensidoni M, Narvhus J (1996) Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int Dairy J 6(8–9):755–768

    Google Scholar 

  • Sensidoni A, Rondinini G, Peressini D, Maifreni M, Bortolomeazzi R (1995) Presence of an off-flavour associated with the use of sorbates in cheese and margarine. Ital J Food Sci 6(2):237–242

    Google Scholar 

  • Snyder AB, Worobo RW (2018) Fungal spoilage in food processing. J Food Prot 81(6):1035–1040

    Article  PubMed  Google Scholar 

  • Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ (2015) Brettanomyces yeasts—from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 206:24–38

    Article  CAS  PubMed  Google Scholar 

  • Stern GA (1978) In vitro antibiotic synergism against ocular fungal isolates. Am J Ophthalmol 86(3):359–367

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Steels H, Nebe-von-Caron G, Avery SV, Novodvorska M, Archer DB (2014) Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives. Int J Food Microbiol 181:40–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Streekstra H, Verkennis AE, Jacobs R, Dekker A, Stark J, Dijksterhuis J (2016) Fungal strains and the development of tolerance against natamycin. Int J Food Microbiol 238:15–22

    Article  CAS  PubMed  Google Scholar 

  • Suriyarachchi VR, Fleet GH (1981) Occurrence and growth of yeasts in yogurts. Appl Environ Microbiol 42(4):574–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutariya S, Sunkesula V, Kumar R, Shah K (2018) Emerging applications of ultrasonication and cavitation in dairy industry: a review. Cogent Food Agric 4(1):1549187

    Article  Google Scholar 

  • Szczodrak J, Szewczuk D, Fiedurek J, Rogalski J (1997) Selection of yeast strain and fermentation conditions for high-yield ethanol production from lactose and concentrated whey. Acta Biotechnol 17(1):51–61

    Article  CAS  Google Scholar 

  • Temelli S, Anar Ş, Sen C, Akyuva P (2006) Determination of microbiological contamination sources during Turkish white cheese production. Food Control 17(11):856–861

    Article  CAS  Google Scholar 

  • Van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6(3):381–392

    Article  PubMed  CAS  Google Scholar 

  • Vandenplas Y, Benninga M (2009) Probiotics and functional gastrointestinal disorders in children. J Pediatr Gastroenterol Nutr 48:S107–S109

    Article  PubMed  Google Scholar 

  • Varga L, Szigeti J (2016) Use of ozone in the dairy industry: a review. Int J Dairy Technol 69(2):157–168

    Article  CAS  Google Scholar 

  • von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2015) Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 211:57–65

    Article  CAS  Google Scholar 

  • Wan J, Coventry J, Swiergon P, Sanguansri P, Versteeg C (2009) Advances in innovative processing technologies for microbial inactivation and enhancement of food safety–pulsed electric field and low-temperature plasma. Trends Food Sci Technol 20(9):414–424

    Article  CAS  Google Scholar 

  • Westall S, Filtenborg O (1998) Spoilage yeasts of decorated soft cheese packed in modified atmosphere. Food Microbiol 15(2):243–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Awasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awasti, N., Anand, S. (2020). The Role of Yeast and Molds in Dairy Industry: An Update. In: Minj, J., Sudhakaran V, A., Kumari, A. (eds) Dairy Processing: Advanced Research to Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2608-4_12

Download citation

Publish with us

Policies and ethics