Skip to main content

Microbial Production of Antibiotics Using Metabolic Engineering

  • Chapter
  • First Online:
Engineering of Microbial Biosynthetic Pathways

Abstract

Metabolic engineering is an advanced production technology to produce novel antibiotic factories by enabling development of high-performance engineered microbial strains. Since, antibiotic yield and productivity are the keen design parameters therefore in metabolic engineering main focus is directed on the carbon flux to increase the antibiotic yield. To achieve this goal, various approaches like genetic modifications, heterologous production, and metabolic alterations are introduced which resulted in substantial elevation of the existing conventional production processes of antibiotics. This book chapter deals with current state of art in metabolic engineering for higher yield of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    PubMed  Google Scholar 

  • Beltrametti F, Rossi R, Selva E, Marinelli F (2006) Antibiotic production improvement in the rare actinomycete Planobisporarosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin. J Ind Microbiol Biotechnol 33:283–288

    CAS  PubMed  Google Scholar 

  • Blanco G, Fernández E, Fernández MJ, Braña AF, Weissbach U, Künzel E, Rohr J, Méndez C, Salas JA (2000) Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus. Mol Gen Genet 262:991–1000

    CAS  PubMed  Google Scholar 

  • Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41(2):175–184

    CAS  PubMed  Google Scholar 

  • Chen Y, Deng W, Wu J, Qian J, Chu J, Zhuang Y, Zhang S, Liu W (2008) Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of Erythromycin A purity and production in Saccharopolyspora erythraea fermentation. Appl Environ Microbiol 74(6):1820–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chouayekh H, Virolle MJ (2002) The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43:919–930

    CAS  PubMed  Google Scholar 

  • Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–233

    CAS  PubMed  Google Scholar 

  • Decker H, Summers RG, Hutchinson CR (1994) Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J Antibiot 47:54–63

    CAS  PubMed  Google Scholar 

  • Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    CAS  PubMed  Google Scholar 

  • Horinouchi S, Hara O, Beppu T (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 155:1238–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka T, Xu J, Ochi K (2006) Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 61:883–897

    CAS  PubMed  Google Scholar 

  • Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certainstreptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42:2041–2047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Ochi K (2001) Novel approach for improving the productivity of antibioticproducing strains by inducing combined resistant mutations. Appl Environ Microbiol 67:1885–1892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung TV, Malla S, Park BC, Liou K, Lee HC, Sohng JK (2007) Enhancement of clavulanic acid by replicative and integrative expression of ccaR and cas2 in Streptomyces clavuligerusNRRL3585. J Microbiol Biotechnol 17:1538–1545

    CAS  PubMed  Google Scholar 

  • Kuscer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petković H (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189:4756–4763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14:1359–6446

    Google Scholar 

  • Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8:240–252

    CAS  PubMed  Google Scholar 

  • Li Y, Ling H, Li W, Tan H (2005) Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7:165–173

    PubMed  Google Scholar 

  • Lombó F, Braña AF, Méndez C, Salas JA (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181:642–647

    PubMed  PubMed Central  Google Scholar 

  • Lomovskaya N, Doi-Katayama Y, Filippini S, Nastro C, Fonstein L, Gallo M, Colombo AL, Hutchinson CR (1998) The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180:2379–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madduri K, Waldron C, Merlo DJ (2001) Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol 183:5632–5638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maharjan S, Oh TJ, Lee HC, Sohng JK (2008) Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol Lett 30:1621

    CAS  PubMed  Google Scholar 

  • Malmberg LH, Hu WS, Sherman DH (1993) Precursor flux control through targeted chromosomal insertion of the lysine epsilon-aminotransferase (lat) gene in cephamycin C biosynthesis. J Bacteriol 175:6916–6924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malmberg LH, Hu WS, Sherman DH (1995) Effects of enhanced lysine epsilonaminotransferase activity on cephamycin biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 44:198–205

    CAS  PubMed  Google Scholar 

  • Martínez-Costa OH, Martín-Triana AJ, Martínez E, Fernández-Moreno MA, Malpartida F (1999) An additional regulatory gene for actinorhodin production in Streptomyces lividans involves a LysR-type transcriptional regulator. J Bacteriol 181:4353–4364

    PubMed  PubMed Central  Google Scholar 

  • Méndez C, Salas JA (2001) The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 152:341–350

    PubMed  Google Scholar 

  • Mendes MV, Tunca S, Antón N, Recio E, Sola-Landa A, Aparicio JF, Martín JF (2007) The two-component phoR–phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9:217–227

    CAS  PubMed  Google Scholar 

  • Menéndez N, Braña AF, Salas JA, Méndez C (2007) Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 153:3061–3070

    PubMed  Google Scholar 

  • Murrell JM, Liu W, Shen B (2004) Biochemical characterization of the SgcA1 alpha-D-glucopyranosyl-1-phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and overexpression of sgcA1 in Streptomyces globisporus to improve C-1027 production. J Nat Prod 67:206–213

    CAS  PubMed  Google Scholar 

  • Nguyen KT et al (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 103:17462–17467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K (2007) Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol 189:3876–3883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto-Hosoya Y, Okamoto S, Ochi K (2003) Development of antibioticoverproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol 69:256–259

    Google Scholar 

  • Olano C, Rodríguez AM, Méndez C, Salas JA (1995) A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16:333–343

    CAS  PubMed  Google Scholar 

  • Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    CAS  PubMed  Google Scholar 

  • Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156:707–712

    CAS  PubMed  Google Scholar 

  • Penn J, Li X, Whiting A, Latif M, Gibson T, Silva CJ, Brian P, Davies J, Miao V, Wrigley SK, Baltz RH (2006) Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 33(2):121–128

    CAS  PubMed  Google Scholar 

  • Salas JA, Méndez C (2005) Biosynthesis pathways for deoxysugars in antibioticproducing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9:77–85

    CAS  PubMed  Google Scholar 

  • Scotti C, Hutchinson CR (1996) Enhanced antibiotic production by manipulation of the Streptomyces peucetiusdnrH and dnmT genes involved in doxorubicin (adriamycin) biosynthesis. J Bacteriol 178:7316–7321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekurova O, Sletta H, Ellingsen TE, Valla S, Zotchev S (1999) Molecular cloning and analysis of a pleiotropic regulatory gene locus from the nystatin producer Streptomyces noursei ATCC11455. FEMS Microbiol Lett 177:297–304

    CAS  PubMed  Google Scholar 

  • Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego

    Google Scholar 

  • Shomar H, Gontier S, van den Broek NJF, Mora HT, Noga MJ, Hagedoorn P-L, Bokinsky G (2018) Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat Chem Biol 14(8):794–800

    CAS  PubMed  Google Scholar 

  • Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR–PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–61338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song JY, Kim ES, Kim DW, Jensen SE, Lee KJ (2008) Functional effects of increased copy number of the gene encoding proclavaminate amidino hydrolase on clavulanic acid production in Streptomyces clavuligerus ATCC 27064. J Microbiol Biotechnol 18:417–426

    PubMed  Google Scholar 

  • Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69:6412–6417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umeyama T, Tanabe Y, Aigle BD, Horinouchi S (1996) Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol Lett 144:177–184

    CAS  PubMed  Google Scholar 

  • Wang G, Tan H (2004) Enhanced production of nikkomycin X by over-expression of SanO, a non-ribosomal peptide synthetase in Streptomyces ansochromogenes. Biotechnol Lett 26:229–233

    CAS  PubMed  Google Scholar 

  • Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug-resistance mutations. Appl Environ Microbiol 74:2834–2840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T (2014) In silico tools for the analysis of antibiotic biosynthetic pathways. Int J Med Microbiol 304:230–235

    CAS  PubMed  Google Scholar 

  • Wohlert SE, Künzel E, Machinek R, Méndez C, Salas JA, Rohr J (1999) The structure of mithramycin reinvestigated. J Nat Prod 62:119–121

    CAS  PubMed  Google Scholar 

  • Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A 103:9661–9666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    CAS  PubMed  Google Scholar 

  • Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33:963–987

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Gupta, P., Pruthi, V. (2020). Microbial Production of Antibiotics Using Metabolic Engineering. In: Singh, V., Singh, A., Bhargava, P., Joshi, M., Joshi, C. (eds) Engineering of Microbial Biosynthetic Pathways. Springer, Singapore. https://doi.org/10.1007/978-981-15-2604-6_13

Download citation

Publish with us

Policies and ethics