Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 849 Accesses

Abstract

We review a general theory to describe the nonunitary evolution of quantum systems under measurement, which is the main subject of the first part of this Thesis. Quantum measurement theory provides us with a theoretical framework to discuss how a quantum system exhibits an unavoidable change due to a measurement process. In particular, theory of continuous measurements gives a unified description to study the nonunitary dynamics of quantum systems subject to weak and frequent repeated measurements. In Sect. 2.1, we formulate a quantum measurement process based on an indirect measurement model and review its mathematical property. In Sect. 2.2, we apply it to formulate a theory of continuous observations, in which measurements are performed continuously in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that \(dN_{m}\) is not a simple Poisson process as its intensity depends on a stochastic vector \(|\psi \rangle _{S}\).

References

  1. Breuer H-P, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, Oxford, England

    MATH  Google Scholar 

  2. Nielsen M, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge, England

    Book  Google Scholar 

  3. Wiseman H, Milburn G (2010) Quantum measurement and control. Cambridge University Press, Cambridge, England

    MATH  Google Scholar 

  4. Hellwig K-E, Kraus K (1970) Operations and measurements II. Comm Math Phys 16:142–147

    Article  ADS  MathSciNet  Google Scholar 

  5. Kraus K (1971) General state changes in quantum theory. Ann Phys 64:311–335

    Article  ADS  MathSciNet  Google Scholar 

  6. Stinespring WF (1955) Positive functions on C*-algebras. Proc Am Math Soc 6:211–216

    MathSciNet  MATH  Google Scholar 

  7. Ozawa M (1984) Quantum measuring processes of continuous observables. J Math Phys 25:79–87

    Article  ADS  MathSciNet  Google Scholar 

  8. Imoto N, Ueda M, Ogawa T (1990) Microscopic theory of the continuous measurement of photon number. Phys Rev A 41:4127–4130

    Article  ADS  Google Scholar 

  9. Ueda M, Imoto N, Nagaoka H, Ogawa T (1992) Continuous quantum-nondemolition measurement of photon number. Phys Rev A 46:2859–2869

    Article  ADS  Google Scholar 

  10. Miyashita S, Ezaki H, Hanamura E (1998) Stochastic model of nonclassical light emission from a microcavity. Phys Rev A 57:2046–2055

    Article  ADS  Google Scholar 

  11. Ueda M (1989) Probability-density-functional description of quantum photodetection processes. Quantum Opt J Eur Opt Soc Part B 1:131

    Article  ADS  Google Scholar 

  12. Ueda M (1990) Nonequilibrium open-system theory for continuous photodetection processes: a probability-density-functional description. Phys Rev A 41:3875–3890

    Article  ADS  MathSciNet  Google Scholar 

  13. Dum R, Zoller P, Ritsch H (1992) Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys Rev A 45:4879–4887

    Article  ADS  Google Scholar 

  14. Carmichael H (1993) An open system approach to quantum optics. Springer, Berlin

    Book  Google Scholar 

  15. Dalibard J, Castin Y, Mølmer K (1992) Wave-function approach to dissipative processes in quantum optics. Phys Rev Lett 68:580–583

    Article  ADS  Google Scholar 

  16. Barchielli A, Gregoratti M (2012) Quantum measurements in continuous time, non-Markovian evolutions and feedback. Philos Trans R Soc A 370:5364–5385

    Article  ADS  MathSciNet  Google Scholar 

  17. Gorini V, Kossakowski A, Sudarshan ECG (1976) Completely positive dynamical semigroups of \(n\) level systems. J Math Phys 17:821–825

    Article  ADS  MathSciNet  Google Scholar 

  18. Lindblad G (1976) On the generators of quantum dynamical semigroups. Commun Math Phys 48:119–130

    Article  ADS  MathSciNet  Google Scholar 

  19. Ashida Y, Saito K, Ueda M (2018) Thermalization and heating dynamics in open generic many-body systems. Phys Rev Lett 121:170402

    Article  ADS  Google Scholar 

  20. Ashida Y, Ueda M (2018) Full-counting many-particle dynamics: nonlocal and chiral propagation of correlations. Phys Rev Lett 120:185301

    Article  ADS  Google Scholar 

  21. Ashida Y, Furukawa S, Ueda M (2017) Parity-time-symmetric quantum critical phenomena. Nat Commun 8:15791

    Article  ADS  Google Scholar 

  22. Ashida Y, Furukawa S, Ueda M (2016) Quantum critical behavior influenced by measurement backaction in ultracold gases. Phys Rev A 94:053615

    Article  ADS  Google Scholar 

  23. Würtz P, Langen T, Gericke T, Koglbauer A, Ott H (2009) Experimental demonstration of single-site addressability in a two-dimensional optical lattice. Phys Rev Lett 103:080404

    Article  ADS  Google Scholar 

  24. Barontini G, Labouvie R, Stubenrauch F, Vogler A, Guarrera V, Ott H (2013) Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys Rev Lett 110:035302

    Article  ADS  Google Scholar 

  25. Labouvie R, Santra B, Heun S, Ott H (2016) Bistability in a driven-dissipative superfluid. Phys Rev Lett 116:235302

    Article  ADS  Google Scholar 

  26. El-Ganainy R, Makris KG, Khajavikhan M, Musslimani ZH, Rotter S, Christodoulides DN (2018) Non-Hermitian physics and PT symmetry. Nat Phys 14:11

    Article  Google Scholar 

  27. Zhao H, Feng L (2018) Parity-time symmetric photonics. Natl Sci Rev 5:183–199

    Article  Google Scholar 

  28. Ashida Y, Ueda M (2017) Multiparticle quantum dynamics under real-time observation. Phys Rev A 95:022124

    Article  ADS  Google Scholar 

  29. Ashida Y, Ueda M (2015) Diffraction-unlimited position measurement of ultracold atoms in an optical lattice. Phys Rev Lett 115:095301

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Ashida .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashida, Y. (2020). Continuous Observation of Quantum Systems. In: Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2580-3_2

Download citation

Publish with us

Policies and ethics