Skip to main content

Implementation of the Bidirectional Reflectance Function for Modeling the Spectra Derived from Hyperspectral Images

  • Conference paper
  • First Online:
  • 541 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1118))

Abstract

Hapke’s bidirectional reflectance function based on the theory of radiative transfer has been implemented for modeling the spectra derived from Chandrayaan-1 hyperspectral images. The parameter study was done to study the behavior and influence of each parameter like grain size, porosity, iron fraction which represents the degree of space weathering and phase function was critically assessed. The model was then tested against the four standard lunar mixtures which constitutes of major lunar minerals from RELAB, and it was observed that the artificially created model spectra were successful in reproducing the overall trend in the resultant spectra. Finally, the nine representative spectra derived from hyperspectral image of the Chandrayaan-1 HySI sensor covering part of Mare Vaporum were modeled. The mass fraction of the surface minerals along with the associated Hapke parameter was predicted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pieters, C.M., Fischer, E.M., Rode, O., Basu, A.: Optical effects of space weathering—the role of the finest fraction. J. Geophys. Res.—Planets 98, 20817–20824 (1993)

    Google Scholar 

  2. Chapman, C.R.: Space weathering of asteroid surfaces. Annu. Res. Earth Planet. Sci. 32, 539–567 (2004)

    Article  Google Scholar 

  3. Keller, L.P., Mckay, D.S.: Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993)

    Article  Google Scholar 

  4. Keller, L.P., McKay, D.S.: the nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Ac. 61, 2331–2341 (1997)

    Article  Google Scholar 

  5. Taylor, L.A., Pieters, C.M., Keller, L.P., Morris, R.V., McKay, D.S.: Lunar Mare Soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. Planets 106, 27985–27999 (2001)

    Article  Google Scholar 

  6. Taylor, L.A., Pieters, C.M., Patchen, A., Taylor, D.S., Morris, R.V., Keller, L.P., Mckay, D.S.: Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies, J. Geophys. Res. Planets 115, E02002 (2010)

    Google Scholar 

  7. McCord, T.B., Johnson, T.V.: Lunar spectral reflectivity (0.30–2.50 microns) and implications for remote mineralogical analysis. Science 169, 855–858 (1970)

    Article  Google Scholar 

  8. McCord, T.B., Adam, J.B.: Progress in remote optical analysis of lunar surface composition. Moon 7, 453–474 (1973)

    Article  Google Scholar 

  9. Pieters, C.M., Taylor, L.A., Noble, S.K., Keller, L.P., Hapke, B., Morris, R.V., Allen, C.C., McKay, D.S., Wentworth, S.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101–1107 (2000)

    Article  Google Scholar 

  10. Noble, S.K., Pieters, C.M., Keller, L.P.: An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007)

    Article  Google Scholar 

  11. Hapke, B.: Effects of a simulated solar wind on the photometric properties of rocks and powders. Ann. N. Y. Acad. Sci. 123, 711–721 (1965)

    Article  Google Scholar 

  12. Hapke, B., Cohen, A., Cassidy, W., Wells, E.: Solar radiation effects on the optical properties of Apollo 11 lunar samples. In: Proceedings of the Apollo 11 Lunar Science Conference, pp. 2199–2212 (1970)

    Google Scholar 

  13. Nobel, S.K., Pieters, C.M.: Space weathering on mercury: implications for remote sensing. Sol. Syst. Res. 37, 31–35 (2003)

    Article  Google Scholar 

  14. Brunetto, R., Vernazza, P., Marchi, S., Birlan, M., Fulchignoni, M., Orofino, V., Strazzulla, G.: modeling asteroid surfaces from observations and irradiation experiments: the case of 832 Karin. Icarus 184, 327–337 (2006)

    Article  Google Scholar 

  15. Shkuratov, Y.G., Starukhina, L., Huffmann, H., Arnold, G.: A model of spectral albedo of particulate surfaces: Implications for optical properties of the moon. Icarus 137(2), 235–246 (1999). https://doi.org/10.1006/icar.1998.6035

    Article  Google Scholar 

  16. Hapke, B.: Bidirectional reflectance spectroscopy. I—Theory. J. Geophys. Res. 86, 3039–3054 (1981)

    Article  Google Scholar 

  17. Sunshine, J.M., Pieters, C.M., Prait, S.F.: Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res. 95(B5), 6955–6966 (1990). https://doi.org/10.1029/JB095iB05p06955

    Article  Google Scholar 

  18. Poulet, F., Erard, E.: Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures. J. Geophys. Res. 109, E02009 (2004). https://doi.org/10.1029/2003JE002179

    Article  Google Scholar 

  19. Hapke, B., Wells, E.: Bidirectional reflectance spectroscopy. II experiments and observations. J. Geophys. Res. 86, 3055–3060 (1981)

    Article  Google Scholar 

  20. Hapke, B.: Bidirectional reflectance spectroscopy. III-Correct. Macrosc., Icarus 59, 41–59 (1984)

    Google Scholar 

  21. Hapke, B.: Bidirectional reflectance spectroscopy. IV-the extinction coe_cientand the opposition e_ect. Icarus 67, 264–280 (1986)

    Article  Google Scholar 

  22. Hapke, B.: Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing, Cambridge University Press, Cambridge, UK (1993)

    Google Scholar 

  23. Hapke, B.: Space weathering from mercury to the asteroid belt. J. Geophys. Res. 106, 10039–10074 (2001)

    Google Scholar 

  24. Clark, R.N., Roush, T.L.: Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984). https://doi.org/10.1029/JB089iB07p06329

    Article  Google Scholar 

  25. Mustard, J.F., Pieters, C.M.: Quantitative abundance estimates from bidirectional reflectancemeasurements. Proc. Lunar Planet. Sci. Conf. 17th, Part 2 J. Geophys. Res. 92, E617–E626 (1987). https://doi.org/10.1029/JB092iB04p0E617

    Article  Google Scholar 

  26. Lucey, P.G.: mineral maps of the moon. Geophys. Res. Lett. 31, L08701 (2004). https://doi.org/10.1029/2003GL019406

    Article  Google Scholar 

  27. Lawrence, S.J., Lucey, P.G.: Radiative transfer mixing models of meteoritic assemblages. J. Geophys. Res. 112, E07005 (2007). https://doi.org/10.1029/2006JE002765

    Article  Google Scholar 

  28. Cahill, J.T.S., Lucey, P.G., Wieczorek, M.A.: Compositional variations of the lunar crust: results from radiative transfer modeling of central peak spectra. J. Geophys. Res. 114, E09001 (2009). https://doi.org/10.1029/2008JE003282

    Article  Google Scholar 

  29. Cahill, J.T.S., Lucey, P.G., Stockstill-Cahill, K.R., Hawke, B.R.: Radiative transfer modeling of near-infrared reflectance of lunar highland and mare soils. J. Geophys. Res. 115, E12013 (2010). https://doi.org/10.1029/2009JE003500

    Article  Google Scholar 

  30. Hiroi, T., Pieters, C. M.: Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. J. Geophys. Res. 99, 10867–10880 (1994)

    Google Scholar 

  31. Kitamura, R., Pilon, L., Jonasz, M.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118 (2007)

    Article  Google Scholar 

  32. Johnson, P.B., Cristy, R.W.: Optical constants of metals: Ti, V, Cr, Mn, Fe, Co,Ni, and Pd, prb, 9, 5056–5070 (1974)

    Google Scholar 

  33. Mustard, J.F., Pieters, C.M.: Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 94, 13619–13634 (1989)

    Google Scholar 

  34. Hapke, B.: Bidirectional reflectance Spectroscopy5. Coherent Backscatter Oppos. Eff. Anisotropic Scatt., Icarus 157, 523–534 (2002)

    Google Scholar 

  35. Hiesinger, H., Head III, J.W., Wolf, U., Jaumann, R., Neukum, G.: Ages and stratigraphy of mare basalts in oceanus procellarum, mare nubium, mare cognitum, and mare insularum. J. Geophys. Res.: Planets 108(E7) (2003)

    Google Scholar 

Download references

Acknowledgements

“The author is thankful for the financial assistance received from DoS (Department of Space, ISRO/SSPO/Ch-1/2016-17, August 17, 2016). This work is a part of the ISRO project under Chandrayaan-1 AO (Announcement of Opportunity) program. The research is based (partially or to a significant extent) on the results obtained from the Chandrayaan-1, first lunar mission of the ISRO, archived at the Indian Space Science Data Center (ISSDC).”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammed Zeeshan, R., Sayyad Shafiyoddin, B. (2020). Implementation of the Bidirectional Reflectance Function for Modeling the Spectra Derived from Hyperspectral Images. In: Reddy, V., Prasad, V., Wang, J., Reddy, K. (eds) Soft Computing and Signal Processing. ICSCSP 2019. Advances in Intelligent Systems and Computing, vol 1118. Springer, Singapore. https://doi.org/10.1007/978-981-15-2475-2_45

Download citation

Publish with us

Policies and ethics