Skip to main content

Quantum Gates

  • Chapter
  • First Online:
The Amazing World of Quantum Computing

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 2272 Accesses

Abstract

This chapter introduces the fundamentals of quantum gates (operators) and describes generally used gates in designing quantum algorithms.

First I shall do some experiments before I proceed farther, because my intention is to cite experience first and then with reasoning show why such experience is bound to operate in such a way. And this is the true rule by which those who speculate about the effects of nature must proceed.

Leonardo Da Vinci, C. 1513 (Quotation as cited in Fritjof Capra, The Science of Leonardo, Doubleday, New York, 2007.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dirac [8, p. 47].

  2. 2.

    Dirac [8, p. 52].

  3. 3.

    Landauer [11].

  4. 4.

    Bennett [4].

  5. 5.

    Toffoli [17].

  6. 6.

    Fredkin and Toffoli [10].

  7. 7.

    Deutsch [6, p. 107].

  8. 8.

    Although we use the electron in an atom as an example here, one may, instead, use two different polarizations of a photon or the alignment of a nuclear spin in a uniform magnetic field or the two orthogonal spin states (up and down) of an electron, etc.

  9. 9.

    Permutation: each of several possible ways in which a set or number of things can be ordered or arranged.

  10. 10.

    A half-silvered mirror effects this transformation on a photon when it encounters the mirror.

  11. 11.

    In modulo 2 arithmetic , the following addition rules for adding two binary numbers are quite obvious:

    $$ 0 + 0 \equiv 0(\bmod 2),0 + 1 \equiv 1(\bmod 2),1 + 0 \equiv 1(\bmod 2),1 + 1 \equiv 0(\bmod 2). $$

    Analogously, the XOR (or Cnot) operation is:

    $$ 0 \oplus 0 = 0,\quad 0 \oplus 1 = 1,\quad 1 \oplus 0 = 1,\quad 1 \oplus 1 = 0. $$
  12. 12.

    See Barenco et al. [1].

  13. 13.

    It is named after Tommaso Toffoli, who in 1980 showed that the classical version is universal for classical reversible computation. See Toffoli [17]. To know more about Toffoli, visit http://pm1.bu.edu/~tt/vita.pdf.

  14. 14.

    Shinde and Markov [16].

  15. 15.

    Named after Edward Fredkin. See Fredkin and Toffoli [10].

  16. 16.

    A proof is available in Nielsen and Chuang [15, pp. 174–7]. See also: Barenco et al. [1].

  17. 17.

    For a proof and implementation example, see Nielsen and Chuang [15, p. 176 and pp. 180–182].

  18. 18.

    Muller [13].

  19. 19.

    See, e.g., Nielsen and Chuang [15, pp. 189 and 191].

  20. 20.

    Even though S = T2, i.e., the phase gate S is included because of its natural role in the fault-tolerant constructions. See Nielsen and Chuang [15, p. 189].

  21. 21.

    DiVincenzo [9].

  22. 22.

    Barenko [2].

  23. 23.

    Lloyd [12].

  24. 24.

    Deutsch et al. [7].

  25. 25.

    Deutsch [6].

  26. 26.

    Muthukrishnan [14].

  27. 27.

    Muthukrishnan [14].

  28. 28.

    Bennett [3].

  29. 29.

    Turing [18]. See also: Church [5].

  30. 30.

    Bennett [4].

  31. 31.

    See, e.g., Landauer [11]; Bennett [3]. Bennett, in particular, showed that a Turing machine “may be made logically reversible at every step, while retaining their simplicity and their ability to do general computations.” He also discussed the biosynthesis of messenger RNA as a physical example of reversible computation.

References

  1. A. Barenco et al., Elementary gates for quantum computation. arXiv:quant-ph/9503016v1, 23 Mar 1995. https://arxiv.org/pdf/quant-ph/9503016v1.pdf. Also as: A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

  2. A. Barenco, A universal two-bit gate for quantum computation (1995). arXiv:quant-ph/9503016v1, http://arxiv.org/PS_cache/quant-ph/pdf/9505/9505016v1.pdf

  3. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973). https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf

  4. C.H. Bennet, The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982). https://www.cc.gatech.edu/computing/nano/documents/Bennett%20-%20The%20Thermodynamics%20Of%20Computation.pdf. Reprinted in H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon: Entropy, Information, Computing, Chapter 4, Section 4.2 (CRC Press, Boca Raton, 1990)

  5. A. Church, An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363 (1936)

    Google Scholar 

  6. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 400(1818), 97–117 (1985). http://www.qubit.org/oldsite/resource/deutsch85.pdf

  7. D. Deutsch, A. Barenco, A. Ekert, Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1995)

    Google Scholar 

  8. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, Oxford, 1958)

    Google Scholar 

  9. D.P. DiVincenzo, Two-bit gates are universal for quantum computation. Phys. Rev. A 50, 1015–1022 (1995). Also at https://arxiv.org/abs/cond-mat/9407022

  10. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982). http://calculemus.org/logsoc03/materialy/ConservativeLogic.pdf

  11. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961). Reprinted in IBM J. Res. Dev. 44(1–2), 261–269 (2000). http://www.pitt.edu/~jdnorton/lectures/Rotman_Summer_School_2013/thermo_computing_docs/Landauer_1961.pdf

  12. S. Lloyd, Almost any quantum logic gate is universal. Phys. Rev. Lett. 75(2), 346–349 (1995). http://capem.buffalo.edu/rashba/p346_1.pdf

  13. D.E. Muller, Complexity in electronic switching circuits. IRE Trans. Electr. Comput. 5, 15–19 (1956).

    Google Scholar 

  14. A. Muthukrishnan, Classical and quantum logic gates: an introduction to quantum computing, in Quantum Information Seminar, Rochester Center for Quantum Information, 03 Sept 1999. http://www2.optics.rochester.edu/~stroud/presentations/muthukrishnan991/LogicGates.pdf

  15. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). [Errata at http://www.squint.org/qci/]

  16. V.V. Shinde, I.L. Markov, On the CNOT-cost of TOFFOLI gates, 15 Mar 2008, arXiv. Available at http://arxiv.org/abs/0803.2316; also as Quant. Inf. Comp. 9(5–6), 461–486 (2009)

  17. T. Toffoli, Reversible computing, in MIT Technical Report MIT/LCS/TM-151 (1980). http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf

  18. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. S2-42(1), 230–265 (1936–1937). https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf. Correction at: A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. A correction. S2-43(1), 544–546 (1938). http://www.turingarchive.org/viewer/?id=466&title=02

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Bera .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, R.K. (2020). Quantum Gates. In: The Amazing World of Quantum Computing. Undergraduate Lecture Notes in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2471-4_7

Download citation

Publish with us

Policies and ethics