Skip to main content

Steelmaking Processes

  • Chapter
  • First Online:
Basic Concepts of Iron and Steel Making

Abstract

Bessemer proposed a production method of steelmaking within a very short time (15–20 min) by blowing air through molten pig iron without using fuel. Siemens brothers, Germany, developed temperature of the furnace around 1600 ℃ for the first time, on the principle of regeneration of heat from exhaust gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Heat means tap-to-tap time.

References

  1. World Steel In Figures 2019 (World Steel Association)

    Google Scholar 

  2. S.R. Prabhakar, U. Batra, Institution of Engineers (India) MM, 76, 36 (May 1995)

    Google Scholar 

  3. R.H. Tupkary, Introduction to Modern Steelmaking (Khanna Publishers, Delhi, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Kumar Dutta .

Appendices

Probable Questions

  1. 1.

    Hot metal contains 3.0% C, 1.25% Si, 0.8% Mn, 0.04% P and 0.03% S. Do you need a basic slag? Why?

  2. 2.

    ‘Si, Mn and C have good affinity for oxygen than Fe at steelmaking temperature; still Fe reacts first with oxygen’. Why?

  3. 3.

    What do you mean by ‘blow-hot condition’ in Bessemer converter? What will be the effect on steelmaking?

  4. 4.

    What happens in Bessemer steelmaking, if silicon content is less than 1.0% in hot metal?

  5. 5.

    What are the main sources of heat in acid and basic autogenous steelmaking processes?

  6. 6.

    ‘After drop of the big flame in basic Bessemer process, still air blowing is continued’ why? What is that known as?

  7. 7.

    What do you understand by ‘blown metal’?

  8. 8.

    ‘Total FeO content in acid slag is more than basic slag, but the activity of FeO in acid slag is lower than the basic slag’. Why?

  9. 9.

    What were the limitations of Bessemer steelmaking process?

  10. 10.

    What are the problems of using 100% solid pig iron or 100% hot metal as the charge in open-hearth furnace? What is the best combination of charge and why?

  11. 11.

    What is the basic concept of open-hearth process?

  12. 12.

    What is the other name of open-hearth process? Why it is called open-hearth furnace?

  13. 13.

    ‘After partly melt down of the solid charge in open-hearth furnace, the burning rate of fuel should be lower down’. Why?

  14. 14.

    Why hot metal is not charged in open-hearth furnace before the partial melting of scrap?

  15. 15.

    ‘Front flushing of slag, in open-hearth furnace, is advantages for steelmaking’. Explain. Why this is happened?

  16. 16.

    What are the difference between lime boil and ore boil? Which one is more vigorous than other?

  17. 17.

    How ‘blocking of heat’ is done in open-hearth furnace?

  18. 18.

    What are the basic concept of SIP and twin-hearth processes?

Examples

Example 14.1

Steel is being made in a Bessemer converter, using air to oxidize the impurities. The converter charge 20 tonnes of hot metal of composition: 3.5% C, 1.5% Si, 1.2% Mn. 3/4th of the carbon form CO and 1/4th form CO2.

Calculate: (i) the volume of air used and (ii) the composition and total volume of product gases.

Solution

Assume: there is no loss of iron in slag.

  • \( \begin{aligned} & {\text{Reactions}}:\quad {\text{Si}} + {\text{O}}_{2} = {\text{SiO}}_{2} \quad {\text{Mn}} + 1/2\;{\text{O}}_{2} = {\text{MnO}} \\ & \quad \quad \quad \quad \quad\,\,\,\,28 \quad \,32\quad 60\quad \,\,\, \quad55\quad \quad \;\,16\quad \,\, 71 \\ \end{aligned} \)

$$ \begin{array}{*{20}l} {{\text{C}} + {\text{O}}_{2} = {\text{CO}}_{2} \quad \quad \quad \& \quad \quad \quad {\text{C}} + 1/2\,{\text{O}}_{2} = {\text{CO}}} \hfill \\ {12\;\;32\quad \quad 44 \quad \quad \quad \quad \quad \quad \quad 12\quad 16\quad \quad \,\,\,28} \hfill \\ \end{array} $$
  • \( \begin{array}{*{20}l} {{\text{{\underline{Element}}}}\quad \quad {\text{{\underline{Amount\, in \, kg}}}}} \hfill & {{\text{{\underline{oxygen\, require\, in \, kg}}}}} \hfill \\ {{\text{Si}} \to ~20000 \times \left( {\frac{{1.5}}{{100}}} \right)~ = \;300\;{\text{kg}}} \hfill & {\left( {\frac{{32}}{{28}}} \right) \times 300 = 342.86\;{\text{kg}}} \hfill \\ {{\text{Mn}} \to 20000 \times \left( {\frac{{1.2}}{{100}}} \right) = 240\;{\text{kg}}} \hfill & {\left( {\frac{{16}}{{55}}} \right) \times 240 = 69.82\;{\text{kg}}} \hfill \\ {{\text{C}} \to 20000 \times \left( {\frac{{3.5}}{{100}}} \right) = 700\;{\text{k}}\;\;\quad ({\text{i}})\;3/4\;{\text{CO}}} \hfill & {\left( {\frac{{16}}{{12}}} \right) \times 3/4 \times 700 = 700.0\;{\text{kg}}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \,\,\,({\text{ii}})\;1/4\;{\text{CO}}_{2} } \hfill & {\left( {\frac{{32}}{{12}}} \right) \times 1/4 \times 700 = 466.67\;{\text{kg}}~} \hfill \\ \end{array} \)

  • Total oxygen required = 342.86 + 69.82 + 700.0 + 466.67 = 1579.35 kg

  • 32 kg oxygen occupied volume 22.4 Nm3 at STP

  • \( \begin{aligned} {\text{Therefore}},1579.35\;{\text{kg}}\;{\text{oxygen}}\;{\text{occupied}}\;{\text{volume}} & = \left( {\frac{{22.4}}{{32}}} \right) \times 1579.35 \\ & = 1105.55\;{\text{Nm}}^{3} {\text{at}}\;{\text{STP}} \\ \end{aligned} \)

  • Since air contains 21% oxygen by volume

  • \( \begin{array}{*{20}l} {{\text{So}}\;{\text{total}}\;{\text{volume}}\;{\text{of}}\;{\text{air}} = 1105.55 \times ~\left( {\frac{{100}}{{21}}} \right) = ~5264.5\;{\text{Nm}}^{3} {\text{at}}\;{\text{STP}}} \hfill & {} \hfill \\ {{\text{Nitrogen}}\;{\text{contain}} = 5264.5 - 1105.55 = 4158.95\;{\text{Nm}}^{3} {\text{at}}\;{\text{STP}}} \hfill & {({\mathbf{76}}.{\mathbf{09}}\% )} \hfill \\ {{\text{CO}}\;{\text{form}} = \times 700 = 980.0\;{\text{Nm}}^{3} {\text{at}}\;{\text{STP}}} \hfill & {({\mathbf{17}}.{\mathbf{93}}\% )} \hfill \\ {{\text{CO}}_{2} \;{\text{form}} = \times 466.67 = 326.67\;{\text{Nm}}^{3} {\text{at}}\;{\text{STP}}} \hfill & {({\mathbf{5}}.{\mathbf{98}}\% )} \hfill \\ {{\text{Total}}\;{\text{volume}}\;{\text{of}}\;{\text{product}}\;{\text{gases}} = {\mathbf{5465}}.{\mathbf{62}}\;{\mathbf{Nm}}^{{\mathbf{3}}} {\text{at}}\;{\text{STP}}} \hfill & {({\mathbf{100}}\% )} \hfill \\ \end{array} \)

Example 14.2

Chemistry of input and output materials for steel is being made in a basic Bessemer converter process which is as follows:

Element, %

Hot metal

Steel (to be produced)

C

3.40

0.15

Si

1.10

0.01

Mn

0.75

0.25

P

0.40

0.03

S

0.04

0.03

\( \begin{aligned} {\text{Calculate: }} & \left( {\text{i}} \right)\,{\text{ Amount}}\,{\text{of}}\,{\text{hot}}\,{\text{metal}}\,{\text{to}}\,{\text{be}}\,{\text{charged}}\,{\text{per}}\,{\text{tonne}}\,{\text{of}}\,{\text{steel}}\,{\text{production}}{\text{.}} \\ & \left( {{\text{ii}}} \right)\,{\text{Amount}}\,{\text{of}}\,{\text{slag}}\,{\text{produced}}\,{\text{and}}\,{\text{composition}}\,{\text{of}}\,{\text{slag}}{\text{.}} \\\end{aligned} \)

\( \begin{aligned} {\text{Given data:}} & \,\left( {\text{i}}\, \right){\text{Weight}}\,{\text{of}}\,{\text{lime}}\,{\text{is}}\,{\text{50}}\,{\text{kg}}\,{\text{per}}\,{\text{tonne}}\,{\text{of}}\,{\text{steel}}\,{\text{production}}\,{\text{(lime}}\,{\text{contain}} \\ & \quad \;{\text{94}}{\text{.5\% }}\,{\text{CaO}},{\text{2}}{\text{.5\% MgO}},{\text{1}}{\text{.5\% SiO}}_{{\text{2}}} \,{\text{and}}\,{\text{1}}{\text{.5\% }}\,{\text{Al}}_{{\text{2}}} {\text{O}}_{{\text{3}}} {\text{)}} \\ & \left( {{\text{iii}}} \right)\,{\text{1}}{\text{.0\% }}\,{\text{Fe}}\,{\text{loss}}\,{\text{with}}\,{\text{respect}}\,{\text{to}}\,{\text{steel}}\,{\text{production}}{\text{.}} \\ \end{aligned} \)

Solution

  • Assumptions: (a) one tonne steel production,

  • By balancing the chemistry of hot metal and produced steel, we get 94.31% and 99.53% Fe respectively.

  • Fe balance: Fe input = Fe output

  • Fe from HM = Fe goes to steel produce + Fe losses in slag

  • \( \begin{aligned} & {\text{Suppose}}\,{\text{weight}}\,{\text{of}}\,{\text{hot}}\,{\text{metal = W}}_{{{\text{HM}}}} \\ & 0.9431{\mkern 1mu} W_{{{\text{HM}}}} = 0.9953 \times 1000 + 0.01 \times 1000 \\ \end{aligned} \)

  • \( \begin{gathered} {\text{Therefore, }}W_{{HM}} = {\mathbf{1065}}.{\mathbf{95}}{\mkern 1mu} {\mathbf{kg}} \hfill \\ \quad \quad \quad \,\,\quad {\mkern 1mu} {\text{Fe}} + 1/2\;{\text{O}}_{2} = {\text{FeO}} \hfill \\ \quad \quad \quad \,\,\quad {\mkern 1mu} 56\quad \quad \quad \quad \quad {\mkern 1mu} {\mkern 1mu} 72 \hfill \\ \quad \quad \quad \,\,\quad {\mkern 1mu} 56\;{\text{kg}}\;{\text{of}}\;{\text{Fe}}\;{\text{to}}\;{\text{form}}\;72\;{\text{kg}}\;{\text{of}}\;{\text{FeO}} \hfill \\ \quad \quad \quad \,\,\quad 10\;{\text{kg}}\quad \quad \quad \quad \quad \quad \left( {\frac{{72}}{{56}}} \right) \times 10 = 12.86\;{\text{kg}}\;{\text{of}}\;{\text{FeO}} \hfill \\ \end{gathered} \)

  • \( \begin{aligned} & {\mathbf{Si}}\,{\mathbf{balance}}:{\text{Si}}\,{\text{input = Si}}\,{\text{output}} \\ & {\text{Si}}\;{\text{from}}\;{\text{HM}} + {\text{Si}}\;{\text{from}}\;{\text{lime}} = {\text{Si}}\;{\text{goes}}\;{\text{to}}\;{\text{steel}}\;{\text{produce}} \\ & \quad + {\text{Si}}\;{\text{losses}}\;{\text{in}}\;{\text{slag\, (Suppose}}\;{\text{weight}}\;{\text{of}}\;{\text{Si}}\;{\text{losses}}\;{\text{in}}\,{\text{slag}} = W_{\text{Si}} ) \\ & 0.011 \times 1065.95 + 0.015 \times 50 \times \left( {\frac{28}{60}} \right) = 0.0001 \times 1000 + {\text{W}}_{\text{Si}} \\ \end{aligned} \)

  • Therefore, WSi = 11.98 kg

  • \( \begin{array}{*{20}l}& { \quad \quad {\text{Si}} + {\text{O}}_{2} = {\text{SiO}}_{2} } \hfill \\ & { \quad \quad 28\quad \quad \quad {\mkern 1mu} 60} \hfill \\ \end{array} \)

  • 28 kg Si to form 60 kg of SiO2

  • \( 11.98\;{\text{kg}}\quad \quad \left( {\frac{60}{28}} \right) \times 11.98 = 25.67\;{\text{kg}}\;{\text{of}}\;{\text{SiO}}_{2} \;{\text{in}}\;{\text{slag}} \)

  • Mn balance: Mn input = Mn output

  • Mn from HM = Mn in steel + Mn losses in slag

  • 0.0075 × 1065.95 = 0.0025 × 1000 + WMn

  • Therefore, WMn = 7.74 kg

\( \begin{aligned} & \quad \quad {\text{Mn}} + 1/2\;{\text{O}}_{2} = {\text{MnO }} \\ & \quad \quad 55\quad \quad \quad \quad \quad \,\,71 \\ \end{aligned} \)

55 kg Mn to form 71 kg of MnO

\( 7.74\;{\text{kg}}\quad \quad \left( {\frac{71}{55}} \right) \times 7.74 = 10.0\;{\text{kg}}\;{\text{of}}\;{\text{MnO}}\;{\text{in}}\;{\text{slag}}. \)

  • P balance: P input = P output

  • P from HM = P in steel + P goes to slag

  • 0.004 × 1065.95 = 0.0003 × 1000 + WP

  • WP = 3.96 kg

    \( \begin{array}{*{20}l} {2{\text{P}} + 5/2\;{\text{O}}_{2} = {\text{P}}_{2} {\text{O}}_{5} } \hfill \\ { 2 \times 31\quad \quad \quad \quad 142} \hfill \\ \end{array} \)

  • 62 kg P to form 142 kg of P2O5

  • 3.96 kg \( \left( {\frac{142}{62}} \right) \) × 3.96 = 9.07 kg of P2O5

  • S balance: S input = S output

  • S from HM = S in steel + S goes to slag

  • 0.0004 × 1065.95 = 0.0003 × 1000 + WS

  • Therefore, WS = 0.126 kg

    \( \begin{array}{*{20}l} {{\text{CaO}} + {\text{S}} = {\text{CaS}}} \hfill \\ {56\quad \,\,\, 32\quad 72} \hfill \\ \end{array} \)

  • 32 kg S to form 72 kg of CaS

  • 0.126 kg \( \left( {\frac{72}{32}} \right) \) × 0.126 = 0.28 kg of CaS

  • 72 kg CaS formation CaO required 56 kg

  • 0.28 kg \( \left( {\frac{56}{72}} \right) \) × 0.28 = 0.22 kg

  • CaO balance: CaO input = CaO output

  • CaO from lime = CaO in CaS + CaO in Slag

  • \( \begin{array}{*{20}l} {0.945\;{\text{x}}\;50 = 0.22 + {\text{W}}_{\text{CaO}} } \hfill \\ {{\text{W}}_{\text{CaO}} = 47.03{\text{kg}}} \hfill \\ \end{array} \)

MgO balance: MgO from lime = MgO in Slag \( W_{\text{MgO}} = 0.025 \times 50 = 1.25\;{\text{kg}} \)

Al2O3 balance: Al2O3 in lime = Al2O3 in slag

$$ \begin{aligned} & W_{{{\text{Al}}_{2} {\text{O}}_{3} }} = 0.015 \times 50 = 0.75 \\ & {\text{Amount}}\;{\text{of}}\;{\text{slag}} = {\text{W}}_{\text{FeO}} + {\text{W}}_{{{\text{SiO}}_{2} }} + {\text{W}}_{\text{MnO}} + {\text{W}}_{{{\text{P}}_{2} {\text{O}}_{5} }} + {\text{W}}_{\text{CaS}} + {\text{W}}_{\text{CaO}} + {\text{W}}_{\text{MgO}} + {\text{W}}_{{{\text{Al}}_{2} {\text{O}}_{3} }} \\ & \quad \quad \quad \quad \quad \quad = \, 12.86 + 25.67 + 10.0 + 9.07 + 0.28 + 47.03 + 1.25 + 0.75 = {\mathbf{106}}.{\mathbf{91}}\;{\mathbf{kg}} \\ \end{aligned} $$

Composition of slag: 12.03% FeO, 24.01% SiO2, 9.35% MnO, 8.48% P2O3, 0.26% CaS, 43.99% CaO, 1.17% MgO and 0.7% Al2O3.

Example 14.3

400 kg scrap and 400 kg hot metal are charged into a basic open-hearth furnace. The composition of charge materials and product is as follows:

Materials

Composition (%)

C

Mn

Si

P

Hot metal

3.6

1.9

0.9

0.15

Scrap

0.5

0.3

0.1

0.05

Steel produce

1.0

0.5

0.2

0.04

Iron ore

73% Fe2O3

12% MnO

15% SiO2

Slag contains 45% CaO, 20% FeO and 35% SiO2 and MnO.

Find out: (1) weight of iron ore to be added, (2) weight of limestone to be added and (3) weight of slag produce.

Solution

  • Basis of calculation: (1) one tonne of steel production and (2) limestone is pure.

  • Fe balance:

  • Fe from HM + Fe from scrap + Fe from ore = Fe in steel + Fe loss in slag

  • $$ \begin{aligned} & \left( {\frac{93.45}{100}} \right) \times 400 + \left( {\frac{99.05}{100}} \right) \times 400 + \left( {\frac{112}{160}} \right) \times \left( {\frac{73}{100}} \right) \times W_{\text{slag}} \times W_{\text{ore}} = \left( {\frac{98.26}{100}} \right) \times 1000 \\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \,\, + \left( {\frac{20}{100}} \right) \times \left( {\frac{56}{72}} \right) \times W_{\text{slag}} \\ \end{aligned} $$
  • Or 373.8 + 396.2 + 0.511 Wore = 982.6 + 0.156 Wslag

  • Or

    $$ 0.511\;W_{\text{ore}} + 0.156\;W_{\text{slag}} = 212.6 $$
    (1)
  • Si balance:

  • Si from HM + Si from scrap + Si from ore = Si in steel + Si loss in slag

  • $$ \left( {\frac{0.9}{100}} \right) \times 400 + \left( {\frac{0.1}{100}} \right) \times 400 + \left( {\frac{15}{100}} \right) \times \left( {\frac{28}{60}} \right) \times W_{\text{ore}} = \left( {\frac{0.2}{100}} \right) \times 1000 + W_{{{\text{Si}}\;{\text{in}}\;{\text{slag}}}} $$
  • Or 3.6 + 0.4 + 0.07 Wore = 2.0 + WSi in slag

  • Or WSi in slag = 2.0 + 0.07 Wore

  • $$ {\text{Therefore}},W_{{{\text{SiO}}2\;{\text{in}}\;{\text{slag}}}} = \left( {2.0 + 0.07\;W_{\text{ore}} } \right) \times \left( {\frac{60}{28}} \right) = 4.29 + 0.15\;W_{\text{ore}} $$
    (2)
  • Mn balance:

  • Mn from HM + Mn from scrap + Mn from ore = Mn in steel + Mn loss in slag

  • $$ \left( {\frac{1.9}{100}} \right) \times 400 + \left( {\frac{0.3}{100}} \right) \times 400 + \left( {\frac{12}{100}} \right) \times \left( {\frac{55}{71}} \right) \times W_{\text{ore}} = \left( {\frac{0.5}{100}} \right) \times 1000 + W_{{{\text{Mi}}\;{\text{in}}\;{\text{slag}}}} $$
  • Or 7.6 + 1.2 + 0.093 Wore = 5.0 + WMn in slag

  • Or WMn in slag = 3.8 + 0.093 Wore

  • $$ {\text{Therefore}},W_{{{\text{MnO}}\;{\text{in}}\;{\text{slag}}}} = \left( {3.8 + 0.093\;W_{\text{ore}} } \right) \times \left( {\frac{71}{55}} \right) = 4.91 + 0.12\;W_{\text{ore}} $$
    (3)
  • CaO balance:

  • CaO from limestone = CaO in slag

  • (56/100) × WLS = WCaO in slag

  • Or

    $$ W_{{{\text{CaO}}\;{\text{in}}\;{\text{slag}}}} = 0.56\;W_{\text{LS}} $$
    (4)
  • Weight of slag = WFeO in slag + \( W_{{{\text{SiO}}_{2\,{\text{in\, slag}} } }} \) + WMnO in slag + WCaO in slag

  • Wslag = 0.2 Wslag + (4.29 + 0.15 Wore) + (4.91 + 0.12 Wore) + 0.56 WLS

  • Or

    $$0.8\;W_{\text{slag}} = 0.27\;W_{\text{ore}} + 0.56\;W_{\text{LS}} + 9.2 $$
    (5)
  • Again, WCaO in slag = 0.56 WLS = 0.45 Wslag

  • $$ {\text{Therefore}},W_{\text{LS}} = 0.8\;W_{\text{slag}} $$
    (6)
  • Again (\( W_{{{\text{SiO}}_{2} }} \) in slag + WMnO in slag) = 0.35 Wslag

  • Or (4.29 + 0.15 Wore) + (4.91 + 0.12 Wore) = 0.35 Wslag (from Eqs. 2 to 3)

  • Or

    $$ 0.27\;{\text{W}}_{\text{ore}} + 9.2 = 0.35\;{\text{W}}_{\text{slag}} \;{\text{or}}\;{\text{W}}_{\text{ore}} = 1.3\;{\text{W}}_{\text{slag}} {-}9.2 $$
    (7)
  • From Eq. (1): 0.511 Wore + 0.156 Wslag = 212.6

  • Or 0.511 (1.3 Wslag – 9.2) + 0.156 Wslag = 212.6 (from Eq. 7)

  • Or 0.66 Wslag – 4.7 + 0.156 Wslag = 212.6 or 0.82 Wslag = 212.6 + 4.7 = 217.3

  • Therefore, \( \varvec{W}_{{{\mathbf{slag}}}} = {\mathbf{265}}\;{\mathbf{kg}} \).

  • From Eq. 7: \( \varvec{W}_{{{\mathbf{ore}}}} = 1.3\;W_{\text{slag}} {-}9.2 = \left( {1.3 \times 265} \right){-}9.2 = {\mathbf{335}}.{\mathbf{3}}\;{\mathbf{kg}} \)

  • From Eq. 6: \( \varvec{W}_{{{\mathbf{LS}}}} = 0.8\;W_{\text{slag}} = 0.8 \times 265 = {\mathbf{212}}\;{\mathbf{kg}}. \)

Example 14.4

Composition of combustion gas burned at the open-hearth furnace is 39.8% H2, 36.9% N2, 7.3% CH4, 8.2% CO, 5.5% CO2 and 2.3% O2. Composition of exit gas is 11.6% H2, 77.5% N2, 7.1% CO, 3.1% CO2 and 0.7% O2. How much heat is utilized by the furnace and how much air required for combustion of m3 gas?

Given: Calorific values of gases (J/m3): 10,932.79 for H2, 12,811.41 for CO, 36,091.18 for CH4.

Solution

  • $$ \begin{aligned} & {\text{Heat}}\;{\text{generate}}\;{\text{from}}\;{\text{burning}}\;{\text{gases}}:{\text{H}}_{2} :\left( {\frac{39.8}{100}} \right)\,{\text{x}}\,10{\text{,}}932.79 = 4{\text{,}}351.25\;{\text{J}} \\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {\text{CO}}:\left( {\frac{8.2}{100}} \right)\,{\text{x}}\,12{\text{,}}811.41 = 1{\text{,}}050.54\;{\text{J}} \\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {\text{CH}}_{4} : \left( {\frac{7.3}{100}} \right)\,{\text{x}}\,36{\text{,}}091.18 = 2{\text{,}}634.66\;{\text{J}} \\ & {\text{Total}}\;{\text{heat}}\;{\text{generated}}\;{\text{by}}\;{\text{burning}}\;{\text{gases}} = 4{\text{,}}351.25 + 1{\text{,}}050.54 + 2{\text{,}}634.66 = 8{\text{,}}036.45\;{\text{J}} \\ \end{aligned} $$
  • $$ \begin{aligned} & {\text{Heat}}\;{\text{carries}}\;{\text{away}}\;{\text{by}}\;{\text{exit}}\;{\text{gases}}:{\text{H}}_{2} :\left( {\frac{11.6}{100}} \right)\,{\text{x}}\,10{\text{,}}932.79 = 1{\text{,}}268.20\;{\text{J}} \\ & \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {\text{CO}}:\left( {\frac{7.1}{100}} \right)\,{\text{x}}\,12{\text{,}}811.41 = 909.61\;{\text{J}} \\ & {\text{Total}}\;{\text{heat}}\;{\text{carries}}\;{\text{away}}\;{\text{by}}\;{\text{exit}}\;{\text{gases}} = 1{\text{,}}268.20 + 909.61 = 2{\text{,}}177.81\;{\text{J}} \\ \end{aligned} $$
  • Therefore, heat utilized by the furnace = 8,036.45 – 2,177.81 = 5,858.64 J

  • $$ \begin{gathered} {\text{H}}_{2} + 1/2\;{\text{O}}_{2} = {\text{H}}_{2} {\text{O}} \to {\text{O}}_{2} {\mkern 1mu} {\text{require}} = \left( {\frac{{39.8}}{{100}}} \right){\text{x}}1/2 = 0.199\;{\text{m}}^{3} {\text{ }} \hfill \\ {\text{CO}} + 1/2\;{\text{O}}_{2} = {\text{CO}}_{2} \to {\text{O}}_{2} {\mkern 1mu} {\text{require}} = \left( {\frac{{8.2}}{{100}}} \right){\text{x}}1/2 = 0.041\;{\text{m}}^{3} {\text{ }} \hfill \\ {\text{CH}}_{4} + 2{\text{O}}_{2} = {\text{CO}}_{2} + 2{\text{H}}_{2} {\text{O}} \to {\text{O}}_{2} {\mkern 1mu} {\text{require}} = \left( {\frac{{7.3}}{{100}}} \right){\text{x}}2 = 0.146{\text{m}}^{3} {\text{ }} \hfill \\ {\text{Total}}\;{\text{O}}_{2} {\mkern 1mu} {\text{require}} = 0.199 + 0.041 + 0.146 = 0.386\;{\text{m}}^{3} \hfill \\ {\text{O}}_{2} \;{\text{present}}\;{\text{in}}\;{\text{the}}\;{\text{combustion}}\;{\text{gas}} = \left( {\frac{{2.3}}{{100}}} \right) = 0.023{\text{m}}^{3} \hfill \\ \end{gathered} $$
  • \( \begin{aligned} & {\text{Total}}\;{\text{O}}_{2} \,{\text{require}} = 0.199 + 0.041 + 0.146 = 0.386\;{\text{m}}^{3} \\ & {\text{O}}_{2} \;{\text{present}}\;{\text{in}}\;{\text{the}}\;{\text{combustion}}\;{\text{gas}} = \left( {\frac{{2.3}}{{100}}} \right) = 0.023{\text{m}}^{3} \\ \end{aligned} \)

  • Hence, actual O2 required for combustion of gas = 0.386 − 0.023 = 0.363 m3

  • Air contains 21% O2,

So, \( {\text{air}}\;{\text{required}}\;{\text{for}}\;{\text{combustion}}\;{\text{of}}\,{\text{gas}} = {\mathbf{1}}.{\mathbf{73}}\;{\mathbf{m}}^{{\mathbf{3}}} /{\mathbf{m}}^{{\mathbf{3}}} {\mathbf{of}}\;{\mathbf{gas}} \).

Problems

Problem 14.1

Steel is being made in a Bessemer converter, using air to oxidize the impurities. The converter charges 10 tonnes of hot metal of composition: 4.0% C, 1.4% Si, 1.2% Mn. 3/4th of the carbon form CO and 1/4th form CO2.

Calculate: (i) the volume of air used, (ii) the composition and total volume of product gases and (iii) weight of slag produce.

[Ans: (i) Volume of air: 2871.93 Nm3 at STP, (ii) Total volume of product gases: 3015.49 Nm3 at STP; 75.24% nitrogen,18.57% CO and 6.19% CO2 and (iii) Wt of slag: 454.91 kg].

Problem 14.2

800 kg hot metal (4.0% C, 1.2% Si, 1.0% Mn, 0.4% P) is charged with scrap (0.25% C, 0.25% Si, 0.5% Mn, 0.04% P) into a basic open-hearth furnace. Limestone is added to maintain slag basicity 2.5. Find out (i) amount of scrap, and (ii) amount of limestone to be charged also and (iii) amount of slag produced with composition.

Given: (i) Product steel contains 0.75% C, 0.2% Si, 0.4% Mn, 0.04% P; (ii) Limestone contains 2% SiO2, 3% Al2O3; and (iii) 1.5% Fe loss in slag.

[Ans: (i) 256.57 kg(ii) 127.44 kg(iii) 131.36 kg (14.68% FeO, 20.55% SiO2, 5.19% MnO, 5.05% P2O3, 51.61% CaO, and 2.91% Al2O3)].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.K., Chokshi, Y.B. (2020). Steelmaking Processes. In: Basic Concepts of Iron and Steel Making. Springer, Singapore. https://doi.org/10.1007/978-981-15-2437-0_14

Download citation

Publish with us

Policies and ethics