Skip to main content

Thermodynamics of Reduction

  • Chapter
  • First Online:
  • 1463 Accesses

Abstract

Success and efficiency of a process are depending on the thermodynamic calculation of the reactions. How much reducing gas (CO) required to reduce iron oxides at different stages and temperatures that should be known before the actual process, i.e. how much reductant is required for the process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.K. Prasad, H.S. Ray, Advances in Rotary Kiln Sponge Iron Plant (New age International Publishers, New Delhi, 2009)

    Google Scholar 

  2. S.K. Dutta and R. Sah, Alternate Methods of Ironmaking (Direct Reduction and Smelting Reduction Processes) (S. Chand & Co Ltd, New Delhi, April 2012)

    Google Scholar 

  3. O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th edn (Pergamon press, Oxford, 1979)

    Google Scholar 

  4. R.L. Stephenson, R.M. Smailer, in Direct Reduced Iron: Technology and Economics of Production and use (The Iron & Steel Society of AIME, USA, 1980)

    Google Scholar 

  5. S.S. Gupta, A. Chatterjee, in Blast Furnace Ironmaking (Tata Steel, India, 1991)

    Google Scholar 

  6. J.K. Wright, I.F. Taylor, D.K. Philip, Mineral Engineering 4, 983 (1991)

    Article  Google Scholar 

  7. Rene Cypres and Claire Soudan-Moinet: Fuel, 60, 33 (Jan 1981)

    Google Scholar 

  8. A. Ghosh, in Proceedings of the International Conference on Alternative Routes of Iron and Steelmaking, Sep 1999, Perth, Australia, p 71

    Google Scholar 

  9. A. Ghosh, S.K. Ajmani, in Proceedings of the Symposium on Kinetics of Metallurgical Processes, 1987, IIT, Kharagpur, India, p 1

    Google Scholar 

  10. A. Ghosh, in Proceedings of the Workshop on Production of Liquid Iron Using Coal, Aug 1994, Bhubaneswar, India, p 139

    Google Scholar 

  11. R.K. Paramguru, R.K. Galgali, H.S. Ray, Metall. Mat. Trans. B 28B, 805 (1997)

    Article  CAS  Google Scholar 

  12. A. Ghosh, A. Chatterjee, Ironmaking and Steelmaking: Theory and Practice (PHI learning Pvt Ltd, New Delhi, 2008)

    Google Scholar 

  13. C. Bodsworth, Physical Chemistry of Iron and Steel Manufacture (CBS Publishers & Distributors, Delhi, 1988)

    Google Scholar 

  14. L.V. Bogdandy, and H.J. Engell, The Reduction of Iron Ores (Springer, Berlin, 1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Kumar Dutta .

Appendices

Probable Questions

  1. 1.

    Discuss the thermodynamics of metal oxide reduction. What is the condition of the reduction reaction of the oxide with respect to CO/CO2 ratio?

  2. 2.

    State and discuss the probable mechanism by which an iron ore is reduced in a CO–CO2 mixture.

  3. 3.

    Draw the diagram showing equilibrium CO/CO2 ratio in contact with carbon and iron oxides at various temperatures. What is the diagram known as? Below 570 °C, FeO is not formed during reduction of Fe3O4. Why? Discuss the significant of the diagram for reduction of iron ore.

  4. 4.

    With the help of Fe–H–O system, find out the conditions of reduction of oxide and oxidation of metal? Discuss the importance of this system.

  5. 5.

    Discuss the changes in the composition of gas in stack region of the BF.

  6. 6.

    Discuss the silicon equilibrium in BF. Explain why at high blast temperature silicon content of metal increases.

  7. 7.

    What are the thermodynamics conditions required for de-sulphurization of iron in BF? Discuss.

  8. 8.

    What are the conditions required for maximum recovery of manganese in metal of a BF?

Examples

Example 10.1

Find out the heat of reaction (\( \Delta H_{r,298}^{0} \)) of the following reactions:

  1. (i)
    $$ 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} $$
  2. (ii)
    $$ {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} $$
  3. (iii)
    $$ {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} $$

Given: \( \Delta H_{f,298}^{0} \) for Fe2O3, Fe3O4, FeO, CO and CO2 are—821.32, −1116.71, −264.43, −110.54 and −393.51 kJ/mol, respectively.

Solution

  1. (i)
    $$ 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} $$

Therefore,

$$ \begin{aligned} \Delta H_{r,298}^{0} & = \left( {2\Delta H_{{{\text{Fe}}_{3} {\text{O}}_{4} }}^{0} + \Delta H^{0}_{{{\text{CO}}_{2} }} } \right) - \left( {3\Delta H_{{{\text{Fe}}_{2} {\text{O}}_{3} }}^{0} + \Delta H_{\text{CO}}^{0} } \right) \\ & = [2( - 1116.71) + ( - 393.51)] - [3( - 821.32) + ( - 110.54)] \\ & = [ - 2233.42 - 393.51] - [ - 2463.96 - 110.54] \\ & = [ - 2626.93 - ( - 2574.5)] = - {\mathbf{52}}{\mathbf{.43}}\;{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{CO}}/{\mathbf{CO}}_{2} \\ & = - {\mathbf{17}}{\mathbf{.48}}\,{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{Fe}}_{{\mathbf{2}}} {\mathbf{O}}_{{\mathbf{3}}} \\ & = - {\mathbf{26}}{\mathbf{.22}}\,{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{Fe}}_{{\mathbf{3}}} {\mathbf{O}}_{{\mathbf{4}}} \\ \end{aligned} $$
  1. (ii)
    $$ {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} $$

Therefore,

$$ \begin{aligned} \Delta H_{r,298}^{0} & = \left( {3\Delta H^{0}_{\text{FeO}} } \right.\left. { + \Delta H^{0}_{{{\text{CO}}2}} } \right) - \left( {\Delta H^{0}_{{{\text{Fe}}3{\text{O}}_{4} }} + \Delta H^{0}_{\text{CO}} } \right) \\ & = [3( - 264.43) + ( - 393.51)] - [ - 1116.71 + ( - 110.54)] \\ & = [ - 7932.9 - 393.51] - [ - 1116.71 - 110.54)] \\ & = [ - 1186.8 - ( - 1227.25)] = {\mathbf{40}}{\mathbf{.45}}\;{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{Fe}}_{{\mathbf{3}}} {\mathbf{O}}_{{\mathbf{4}}} /{\mathbf{CO}} /{\mathbf{CO}}_{{\mathbf{2}}} \\ & = {\mathbf{13}}{\mathbf{.48}}\;{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{FeO}} \\ \end{aligned} $$
  1. (iii)
    $$ {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} $$

Therefore,

$$ \begin{aligned} \Delta H_{r,298}^{0} & = \left( {\Delta H_{\text{Fe}}^{0} + } \right.\left. {\Delta H_{{{\text{CO}}_{2} }}^{0} } \right) - \left( {\Delta H_{\text{FeO}}^{0} + \Delta H^{0}_{\text{CO}} } \right) \\ & = [0 + ( - 393.51)] - [ - 264.43 + ( - 110.54)] \\ & = - 393.51 - [ - 264.43 - 110.54] = [ - 393.51 - ( - 374.97)) \\ & = - {\mathbf{18}}{\mathbf{.54}}\;{\mathbf{kJ}} /{\mathbf{mol}}\,{\mathbf{of}}\,{\mathbf{FeO}} /{\mathbf{Fe}} /{\mathbf{CO}} /{\mathbf{CO}}_{{\mathbf{2}}} \\ \end{aligned} $$

Example 10.2

Reduction of iron oxide in blast furnace takes place in three stages:

$$ {\text{Fe}}_{2} {\text{O}}_{3} \to {\text{Fe}}_{3} {\text{O}}_{4} \to {\text{FeO}} \to {\text{Fe}}. $$

The reactions are as follows:

  1. (i)

    \( 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} ,\Delta G_{1}^{0} = - 32969.92 - 53.85T\,{\text{J}} \)

  2. (ii)

    \( {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} ,\Delta G_{2}^{0} = 29790.08 - 38.28T\,{\text{J}} \)

  3. (iii)

    \( {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} ,\Delta G_{3}^{0} = - 22802.8 + 24.27T\,{\text{J}} \)

  4. (iv)

    \( {\text{Fe}}_{3} {\text{O}}_{4} + 4{\text{CO}} = 3{\text{Fe}} + 4{\text{CO}}_{2} ,\Delta G_{4}^{0} = - 38618.32 + 34.52T\,{\text{J}} \)

Find out the percentage of CO in CO–CO2 mixture in equilibrium with

  1. (a)

    \( {\text{Fe}}_{2} {\text{O}}_{3}{-}{\text{Fe}}_{3} {\text{O}}_{4} \), (b) \( {\text{Fe}}_{3} {\text{O}}_{4} {-} {\text{FeO}} \), (c) \( {\text{FeO}} {-} {\text{Fe }}\,{\text{at}}\,1000\;{\text{K}} \).

  2. (d)

    \( {\text{Fe}}_{3} {\text{O}}_{4} {-} {\text{Fe}}\,{\text{at}}\,800\;{\text{K}} \).

  3. (e)

    Find out temperature at which Fe, FeO and Fe3O4 exist in equilibrium.

Solution

  1. (a)

    Equilibrium constant, \( k_{1} = \left[ {\frac{{a_{{{\text{Fe}}_{3} {\text{O}}_{4} }}^{2} a_{{{\text{CO}}_{2} }} }}{{a_{{{\text{Fe}}_{2} {\text{O}}_{3} }}^{3} a_{\text{CO}} }}} \right] = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) \)

At Std state, \( a_{{{\text{Fe}}_{3} {\text{O}}_{4} }} = 1\quad {\text{and}}\quad a_{{{\text{Fe}}_{2} {\text{O}}_{3} }} = 1 \)

Since \( \Delta G_{1}^{0} = - 32969.92 - 53.85T\,{\text{J}} = - 32969.92 - 53.85 \times 1000 = - 86819.92\,{\text{J}} \)

Again \( \Delta G_{1}^{0} = - {\text{RT}}\,\ln \,k_{1} \)

Therefore, \( - 86819.92 = - 8.314 \times 1000 \times \ln \,k_{1} \)

\( \begin{aligned} \ln \,k_{1} & = 10.4426 \\ k_{1} & = 34290.28 \\ \end{aligned} \)

Let \( p_{\text{CO}} = x \), since \( p_{\text{CO}} + p_{{{\text{CO}}_{2} }} = 1 \)

Therefore, \( p_{{{\text{CO}}_{2} }} = 1 - x \)

Since \( k_{1} = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = 34290.28 = \left( {\frac{1 - x}{x}} \right) \)

Therefore, \( x = 2.916 \times 10^{ - 5} \)

Hence, the percentage of CO in CO–CO2 mixture in equilibrium with \( {\text{Fe}}_{2} {\text{O}}_{3} - {\text{ Fe}}_{3} {\text{O}}_{4} = {\mathbf{2}}{\mathbf{.916}} \times {\mathbf{10}}^{{ - {\mathbf{3}}}} {\mathbf{\% }} \)

Similarly, we can calculate the following:

  1. (b)

    Equilibrium constant, \( k_{2} = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) \)

Since \( \Delta G_{2}^{0} = 29790.08 - 38.28\;{{T}} = 29790.08 - 38.28 \times 1000 = - 8490\;{\text{J}} \)

Again \( \Delta G_{2}^{0} = - {\text{RT}}\,\ln \,k_{2} \)

Therefore, \( - 8490 = - 8.314 \times 1000 \times \ln \,k_{2} \)

\( \begin{array}{*{20}l} {\ln k_{2} = 1.021} \hfill \\ {k_{2} = 2.776} \hfill \\ \end{array} \)

Let \( p_{\text{CO}} = x \), since \( p_{\text{CO}} + p_{{{\text{CO}}_{2} }} = 1 \)

Therefore, \( p_{{{\text{CO}}_{2} }} = 1 - x \)

Since \( k_{2} = \left( {\frac{{p_{{{\text{CO}}_{ 2} }} }}{{p_{\text{CO}} }}} \right) = 2.776 = \left( {\frac{1 - x}{x}} \right) \)

Therefore, \( x = 0.2648 \)

Hence, the percentage of CO in CO–CO2 mixture in equilibrium with Fe3O4–FeO = 26.48%

  1. (c)

    Equilibrium constant, \( k_{3} = \left( {\frac{{p_{{{\text{CO}}_{ 2} }} }}{{p_{\text{CO}} }}} \right) \)

Since \( \Delta G_{3}^{0} = - 22802.8 + 24.27T = - 22802.8 + 24.27 \times 1000 = 1468\,{\text{J}} \)

Again \( \Delta G_{3}^{0} = - {\text{RT}}\ln \,k_{3} \)

Therefore, \( 1468 = - 8.314 \times 1000 \times \ln \,k_{3} \)

\( \begin{array}{*{20}l} {\ln \,k_{3} = - 0.1766} \hfill \\ {k_{3} = 0.838} \hfill \\ \end{array} \)

Let \( p_{\text{CO}} = x \), since \( p_{\text{CO}} + p_{{{\text{CO}}_{2} }} = 1 \)

Therefore, \( p_{{{\text{CO}}_{2} }} = 1 - x \)

Since \( k_{3} = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = 0.838 = \left( {\frac{1 - x}{x}} \right) \)

Therefore, \( x = 0.544 \)

Hence, the percentage of CO in CO–CO2 mixture in equilibrium with FeO–Fe = 54.4%

  1. (d)

    Equilibrium constant, \( k_{4} = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right)^{4} \)

Since \( \Delta G_{4}^{0} = - 38618.32 + 34.52T = - 38618.32 + 34.52 \times 800 = - 11002\,{\text{J}} \)

Again \( \Delta G_{4}^{0} = - {\text{RT}}\ln \,k_{4} \)

Therefore, \( - 11002 = - 8.314 \times 800 \times \ln \,k_{3} \)

\( \ln \,{\text{k}}_{4} = 1.654 \)

\( k_{4} = 5.228 = \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right)^{4} \), so \( \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = (5.228)^{1/4} = 1.512 \)

Let \( p_{\text{CO}} = x \), since \( p_{\text{CO}} + p_{{{\text{CO}}_{2} }} = 1 \)

Therefore, \( p_{{{\text{CO}}_{2} }} = 1 - x \)

Since \( \left( {\frac{{p_{{{\text{CO}}_{2} }} }}{{p_{\text{CO}} }}} \right) = 1.512 = \left( {\frac{1 - x}{x}} \right) \)

Therefore, \( x = 0.3981 \)

Hence, the percentage of CO in CO–CO2 mixture in equilibrium with Fe3O4–Fe = 39.81%

  1. (e)

    \( \begin{aligned} & {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} ,\Delta G_{2}^{0} = 29790.08 - 38.28T\,{\text{J}} \\ & {\text{Fe}} + {\text{CO}}_{2} = {\text{FeO}} + {\text{CO,}} - \Delta G_{3}^{0} = - 22802.8 + 24.27T\,{\text{J}} \\ \hline & {\text{Fe}}_{3} {\text{O}}_{4} + {\text{Fe}} = 4{\text{FeO}},\Delta G^{0} = \left( {\Delta G_{2}^{0} - \Delta G_{3}^{0} } \right) = 52592.88 - 62.55T \\ \end{aligned} \)

At equilibrium \( \Delta G^{0} = 0 \)

Therefore, \( 52592.88 - 62.55T = 0 \)

Hence, \( {\mathbf{T}} = {\mathbf{840}}{\mathbf{.81}}\;{\mathbf{K}} \approx {\mathbf{567}}{\mathbf{.81}}\;^{\circ}{\mathbf{C}} \)

Therefore, at 567.81 °C Fe, FeO and Fe3O4 will exist in equilibrium.

Example 10.3

Find the oxygen pressure of 75% CO and 25% CO2 mixture at 1 atmospheric pressure and 1500 K. Will this gas be able to reduce Fe2O3 and FeO at 1500 K?

Given: \( 2{\text{CO}}_{2} = 2{\text{CO}} + {\text{O}}_{2} \quad \Delta G^{0} = 565,258.4 - 173.64T\,{\text{J}} \)

Oxygen pressure for Fe2O3 at 1500 K = 10−2 atm,

Oxygen pressure for FeO at 1500 K = 10−12 atm.

Solution

$$ \begin{array}{*{20}l} {\Delta G^{0} = 565,258.4 - 173.64T = 565,258 - 173.64 \times 1500 = 304,798\;{\text{J}}} \hfill \\ {\Delta G^{0} = - {\text{RT}}\,\ln \,k} \hfill \\ \end{array} $$

Therefore, \( 304,798 = - 8.314 \times 1500 \times \ln \,k \)

\( \begin{array}{*{20}l} {\ln k = - 24.44} \hfill \\ {k = 2.43 \times 10^{ - 11} } \hfill \\ {2{\text{CO}}_{2} = 2{\text{CO}} + {\text{O}}_{2} } \hfill \\ \end{array} \)

Equilibrium constant, \( k = \left[ {\frac{{p_{\text{CO}}^{2} p_{{{\text{O}}_{2} }} }}{{p_{{{\text{CO}}_{2} }}^{2} }}} \right] = \left[ {\frac{{\left( {0.75} \right)^{2} p_{{{\text{O}}_{2} }} }}{{\left( {0.25} \right)^{2} }}} \right] \)

Therefore \( p_{{{\text{O}}_{2} }} = k.\left( {\frac{{p_{{{\text{CO}}_{2} }}^{2} }}{{p_{\text{CO}}^{2} }}} \right) = 2.43 \times 10^{ - 11} \times \left[ {\frac{{\left( {0.25} \right)^{2} }}{{\left( {0.75} \right)^{2} }}} \right] = 2.7 \times 10^{ - 12} \,{\text{atm}}. \)

Since oxygen pressure for Fe2O3 at 1500 K is 10−2 atm which is greater than equilibrium oxygen pressure, 2.7 × 10−12 atm, mixture of gases will reduce the Fe2O3. But oxygen pressure for FeO at 1500 K is 10−12 atm which is lower than equilibrium oxygen pressure, 2.7 × 10−12 atm, hence mixture of gases will not reduce FeO; instate of that FeO will be oxidized.

Example 10.4

For the reaction: \( {\text{C}} + {\text{CO}}_{2} = 2{\text{CO}},\Delta G^{0} = 170.71 - 0.17T\,{\text{kJ}} \)

Find the temperature of which carbon would be in equilibrium with a mixture of CO and CO2 (at one atm. pressure) containing 70% CO.

Solution

The equilibrium constant of the reaction: \( k = \left[ {\frac{{p_{\text{CO}}^{2} }}{{a_{{{\text{C}} }} p_{{{\text{CO}}_{2} }} }}} \right] = \left[ {\frac{{p_{\text{CO}}^{2} }}{{p_{{{\text{CO}}_{2} }} }}} \right] \)

Since aC = 1, 70% CO, i.e. \( p_{\text{CO}} = 0.7 \) and \( p_{{{\text{CO}}_{2} }} = 0.3 \); Since total pressure = 1 atm.

Therefore, \( k = \left( {\frac{{\left( {0.7} \right)^{2} }}{0.3}} \right) = 1.633 \)

Since

$$ \begin{array}{*{20}l} {\Delta G^{0} = - {\text{RT}}\,\ln \,k = - 8.314T \times \ln (1.633) = - (8.314 \times 0.49)T = - 4.08T} \hfill \\ {(170.71 - 0.17) \times 10^{3} T = - 4.08T} \hfill \\ {(170 - 4.08)T = 170{,}710} \hfill \\ \end{array} $$

Therefore, \( T = 1028.9\;K = 755.9 = {\mathbf{756}}\;^{{\mathbf{^\circ }}} {\mathbf{C}} \)

Example 10.5

  1. (i)

    \( {\text{Fe}}(1) + 1 /2\;{\text{O}}_{2} ({\text{g}}) = {\text{FeO}}(1)\quad {\mathbf{\Delta G}}^{0}_{{\mathbf{i}}} = - 232714.08 + 45.31T\;{\text{J}} \)

  2. ii)

    \( {\text{C}}({\text{s}}) + 1 /2\;{\text{O}}_{2} ({\text{g}}) = {\text{CO}}({\text{g}})\quad {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{{\mathbf{ii}}}} = - 111712.8 - 87.65T\;{\text{J}} \)

  3. iii)

    \( {\text{C}}({\text{s}}) + {\text{O}}_{2} ({\text{g}}) = {\text{CO}}_{2} ({\text{g}})\quad {\mathbf{\Delta G}}^{{\mathbf{^\circ }}}_{{{\mathbf{iii}}}} = - 394132.8 - 0.84T\;{\text{J}} \)

From the above reactions, find out the \( \Delta G^{\text{0}}_{T} \) of the reaction: \( {\text{FeO}}({\text{s}}) + {\text{CO}}({\text{g}}) = {\text{Fe}}({\text{s}}) + {\text{CO}}_{2} ({\text{g}}) \) at 1000 °C.

Solution

Taking reverse equation (i): \( {\text{FeO}}(1) = {\text{Fe}}(1) + 1/2{\text{O}}_{2} ({\text{g}}) - {\mathbf{\Delta G}}^{{\mathbf{0}}}_{{\mathbf{i}}} \)

Taking reverse equation (ii): \( {\text{CO}}({\text{g}}) = {\text{C}}({\text{s}}) + 1/2{\text{O}}_{2} ({\text{g}}) - {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{{\mathbf{ii}}}} \)

Taking equation (iii): \( \begin{aligned} & {\text{C}}({\text{s}}) + {\text{O}}_{2} ({\text{g}}) = {\text{CO}}_{2} ({\text{g}})\quad {\mathbf{\Delta G}}^{{\mathbf{0}}}_{{{\mathbf{ii}}}}\\ & \hfill \\ \hline \end{aligned} \)

By adding: \( {\text{FeO}}({\text{l}}) + {\text{CO}}({\text{g}}) = {\text{Fe}}(1) + {\text{CO}}_{2} ({\text{g}}) \)

$$ \begin{aligned} {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{\mathbf{T}}} & = - {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{\mathbf{i}}} - {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{{\mathbf{ii}}}} + {\mathbf{\Delta G}}_{{{\mathbf{iii}}}}^{{\mathbf{o}}} = - ( - 232714.08 + 45.31T) - ( - 111712.8 - 87.65T) \\ & \quad + ( - 394132.8 - 0.84T) \\ & = \{ (232714.08 + 111712.8) - 394132.8\} + \{ - 45.31 - 0.84 + 87.65\} T \\ & = - 49705.92 + 41.5T = - 49705.92 + 41.5 \times 1273 \\ & = 3123.58\,{\text{J}} = 3.12\,{\text{kJ}} \\ \end{aligned} $$

Since value of \( \Delta {\mathbf{G}}^{{\mathbf{o}}}_{{\mathbf{T}}} \) is (+) ve, reaction will not be possible in forward direction, reaction will take place in backward direction.

Problems

Problem 10.1

Find out the heat of reaction (\( \Delta H_{r,298}^{0} \)) of the following reactions:

  1. (i)

    \( 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{H}}_{2} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{H}}_{2} {\text{O}} \)

  2. (ii)

    \( {\text{Fe}}_{3} {\text{O}}_{4} + {\text{H}}_{2} = 3{\text{FeO}} + {\text{H}}_{2} {\text{O}} \)

  3. (iii)

    \( {\text{FeO}} + {\text{H}}_{2} = {\text{Fe}} + {\text{H}}_{2} {\text{O}} \)

Given: \( \Delta H_{f \, ,298}^{0} \) for Fe2O3, Fe3O4, FeO, and H2O are −821.32, −1116.71, −264.43, and −241.81 kJ/mol respectively.

[Ans: (i) −3.48 kJ/mol of Fe2O3, (ii) 81.61 kJ/mol of Fe3O4, (iii) 22.61 kJ/mol of FeO.]

Problem 10.2

Find out the heat of reaction \( (\Delta H_{r,298}^{0}) \) of the following reactions:

  1. (a)
    $$ {\text{C}} + {\text{CO}}_{2} = 2{\text{CO}} $$
  2. (b)
    $$ {\text{C}} + {\text{H}}_{2} {\text{O}} = {\text{H}}_{2} + {\text{CO}} $$

Given: \( \Delta H_{f \, ,298}^{0} \) for CO2, CO, and H2O are −393.51, −110.54 and −241.81 kJ/mol respectively.

[Ans: (a) 172.42 kJ/mol of C, (b) 131.27 kJ/mol of C.]

Problem 10.3

For the reaction: \( {\text{CO}}_{2} + {\text{C}} = 2{\text{CO}} \), \( \Delta G^{0} = 170707.2 - 174.47T\;{\text{J}} \)

  1. (a)

    Find the temperature at which graphite will be in equilibrium with CO and CO2 at 1 atm pressure containing (i) 30% CO, (ii) 60% CO.

  2. (b)

    Find similar values for a total pressure of 0.1 atm.

  3. (c)

    Find composition of CO and CO2 in equilibrium with graphite at 1000 K.

[Ans: (a) (i) 618.31 °C, (ii) 700.55 °C; (b) (i) 537.31 °C, (ii) 656.95 °C; (c) 69.38% CO and 30.62% CO2].

Problem 10.4

For the reaction: C (s) + CO2 (g) = 2CO (g) at 1100 K and 1 atm, the equilibrium mixture contains 91.6% CO and 8.4% CO2 by volume. (i) Calculate equilibrium constant for the reaction and (ii) the partial pressure of CO2 gas if partial pressure of CO is changed to 10−4 atm.

[Ans: (i) 9.989, (ii) 1.0 × 10−9].

Problem 10.5

The reactions are as follows:

  1. (i)

    \( 3{\text{Fe}}_{2} {\text{O}}_{3} + {\text{CO}} = 2{\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}}_{2} ,\Delta G_{1}^{0} = - 32969.92 - 53.85T\;{\text{J}} \)

  2. (ii)

    \( {\text{Fe}}_{3} {\text{O}}_{4} + {\text{CO}} = 3{\text{FeO}} + {\text{CO}}_{2} ,\Delta {\text{G}}_{2}^{0} = 29790.08 - 38.28T\;{\text{J}} \)

  3. (iii)

    \( {\text{FeO}} + {\text{CO}} = {\text{Fe}} + {\text{CO}}_{2} ,\Delta G_{3}^{0} = - 22802.8 + 24.27T\;{\text{J}} \)

Find out the percentage of CO in CO–CO2 mixture in equilibrium with

  1. (a)

    Fe2O3–Fe3O4, (b) Fe3O4–FeO, (c) FeO–Fe at 1200 K.

[Ans: (a) 5.647 × 10−3%, (b) 16.55% and (c) 65.33%].

Problem 10.6

Calculate \( \Delta G_{T}^{0} \) and the equilibrium CO/CO2 ratio for the reduction of wustite at 900 °C according to the reaction: FeO(s) + CO (g) = Fe (s) + CO2 (g).

Given:

  1. (i)

    \( {\text{Fe}}({\text{I}}) + 1/2{\text{O}}_{2} ({\text{g}}) = {\text{FeO}}({\text{l}})\quad {\mathbf{\Delta G}}_{{\mathbf{i}}}^{{\mathbf{o}}} = - 232714.08 + 45.31T\;{\text{J}} \)

  2. (ii)

    \( {\text{C}}({\text{s}}) + 1/2{\text{O}}_{2} ({\text{g}}) = {\text{CO}}({\text{g}})\quad {\mathbf{\Delta G}}^{{\mathbf{o}}}_{{{\mathbf{ii}}}} = - 111712.8 - 87.65T\;{\text{J}} \)

  3. (iii)
    $$ {\text{C}}({\text{s}}) + {\text{O}}_{2} ({\text{g}}) = {\text{CO}}_{2} ({\text{g}})\quad {\mathbf{\Delta G}}_{{{\mathbf{iii}}}}^{{\mathbf{o}}} = - 394132.8 - 0.84T\;{\text{J}} $$

[Ans: −1026.42 J and 0.9].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.K., Chokshi, Y.B. (2020). Thermodynamics of Reduction. In: Basic Concepts of Iron and Steel Making. Springer, Singapore. https://doi.org/10.1007/978-981-15-2437-0_10

Download citation

Publish with us

Policies and ethics