Abstract
Infertility is a global health problem, affecting an estimated 50 million couples worldwide. It is generally accepted that in 30% of infertile couples, the problem is confined solely to issues related with sperm production, while in 50% of these cases, the problem is a combination of both female and male factors. Since 1992, intracytoplasmic sperm injection (ICSI) has become the technique of hope for many couples suffering from severe male infertility. In order for the ICSI approach to be effective, the preparation and selection of sperm with the highest quality is particularly important. However, current laboratory and clinical results indicate that contemporary methods and approaches are still insufficient to reproducibly prepare and/or select the optimal sperm for successful fertilization, pregnancy, and live birth. In other words, although strong research evidence suggests that the quality of the sperm can predict male fertility potential, association with the main contemporary semen analysis parameters per se is poor or remains largely unclear. This chapter discusses current approaches and their rationale, as well as laboratory and clinical efficacy in selecting the best sperm for a successful ICSI outcome. Based on the available technological knowledge, the future directions in sperm selection for ICSI are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Horst G, Maree L. Sperm form and function in the absence of sperm competition. Mol Reprod Dev. 2014;81(3):204–16. https://doi.org/10.1002/mrd.22277.
Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8. https://www.ncbi.nlm.nih.gov/pubmed/1351601
Krawetz SA. Paternal contribution: new insights and future challenges. Nat Rev Genet. 2005;6(8):633–42. https://doi.org/10.1038/nrg1654.
Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23–37. https://doi.org/10.1093/humupd/dmi047.
Beydola T, Sharma RK, Lee W, Agarwal A. Sperm preparation and selection techniques. In: Male infertility practice. 2013. p. 244–51.
Mehta A, Sigman M. Identification and preparation of sperm for ART. Urol Clin North Am. 2014;41(1):169–80. https://doi.org/10.1016/j.ucl.2013.08.005.
Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26. https://doi.org/10.1093/humupd/dmv042.
Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod. 2013;19(8):475–85. https://doi.org/10.1093/molehr/gat025.
Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36. https://doi.org/10.1016/j.fertnstert.2009.10.046.
Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9. https://doi.org/10.1016/j.fertnstert.2012.12.025.
van der Merwe FH, Kruger TF, Oehninger SC, Lombard CJ. The use of semen parameters to identify the subfertile male in the general population. Gynecol Obstet Investig. 2005;59(2):86–91. https://doi.org/10.1159/000082368.
Abu Hassan Abu D, Franken DR, Hoffman B, Henkel R. Accurate sperm morphology assessment predicts sperm function. Andrologia. 2012;44(Suppl 1):571–7. https://doi.org/10.1111/j.1439-0272.2011.01229.x.
Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077–84. https://doi.org/10.1016/j.fertnstert.2008.01.015.
Kovac JR, Smith RP, Cajipe M, Lamb DJ, Lipshultz LI. Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J Androl. 2017;19(1):39–42. https://doi.org/10.4103/1008-682X.189211.
Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z. ICSI: where we have been and where we are going. Semin Reprod Med. 2009;27(2):191–201. https://doi.org/10.1055/s-0029-1202309.
Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289–95. https://doi.org/10.1016/j.fertnstert.2003.09.063.
Vloeberghs V, Verheyen G, Haentjens P, Goossens A, Polyzos NP, Tournaye H. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum Reprod. 2015;30(8):1790–6. https://doi.org/10.1093/humrep/dev139.
Pereira N, O’Neill C, Lu V, Rosenwaks Z, Palermo GD. The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction. 2017;154(6):F61–70. https://doi.org/10.1530/REP-17-0344.
Belva F, Henriet S, Liebaers I, Van Steirteghem A, Celestin-Westreich S, Bonduelle M. Medical outcome of 8-year-old singleton ICSI children (born >or=32 weeks’ gestation) and a spontaneously conceived comparison group. Hum Reprod. 2007;22(2):506–15. https://doi.org/10.1093/humrep/del372.
Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13. https://doi.org/10.1056/NEJMoa1008095.
Ainsworth C, Nixon B, Jansen RP, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22(1):197–200. https://doi.org/10.1093/humrep/del351.
Fleming SD, Ilad RS, Griffin AM, Wu Y, Ong KJ, Smith HC, et al. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum Reprod. 2008;23(12):2646–51. https://doi.org/10.1093/humrep/den330.
Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006;85(2):481–6. https://doi.org/10.1016/j.fertnstert.2005.07.1302.
Ortega NM, Bosch P. Methods for sperm selection for in vitro fertilization. In vitro fertilization – innovative clinical and laboratory aspects. InTech; 2012.
Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87. https://doi.org/10.1016/j.biotechadv.2016.01.007.
Kheirollahi-Kouhestani M, Razavi S, Tavalaee M, Deemeh MR, Mardani M, Moshtaghian J, et al. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum Reprod. 2009;24(10):2409–16. https://doi.org/10.1093/humrep/dep088.
Nasr Esfahani MH, Deemeh MR, Tavalaee M, Sekhavati MH, Gourabi H. Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: a double-blind, randomized clinical trial. Int J Fertil Steril. 2016;10(2):253–60. https://www.ncbi.nlm.nih.gov/pubmed/27441060
Said TM, Land JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 2011;17(6):719–33. https://doi.org/10.1093/humupd/dmr032.
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.
Romany L, Garrido N, Motato Y, Aparicio B, Remohi J, Meseguer M. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102(6):1567–75. e1. https://doi.org/10.1016/j.fertnstert.2014.09.001.
Gil M, Sar-Shalom V, Melendez Sivira Y, Carreras R, Checa MA. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 2013;30(4):479–85. https://doi.org/10.1007/s10815-013-9962-8.
Delbes G, Herrero MB, Troeung ET, Chan PT. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology. 2013;1(5):698–706. https://doi.org/10.1111/j.2047-2927.2013.00106.x.
Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, Chen HH, et al. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25(4):839–46. https://doi.org/10.1093/humrep/deq009.
Sanchez-Martin P, Dorado-Silva M, Sanchez-Martin F, Gonzalez Martinez M, Johnston SD, Gosalvez J. Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod Biomed Online. 2017;34(5):506–12. https://doi.org/10.1016/j.rbmo.2017.01.015.
Romany L, Garrido N, Cobo A, Aparicio-Ruiz B, Serra V, Meseguer M. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 2017;34(2):201–7. https://doi.org/10.1007/s10815-016-0838-6.
Polak de Fried E, Denaday F. Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using annexin V microbeads. Fertil Steril. 2010;94(1):351.e15–8. https://doi.org/10.1016/j.fertnstert.2009.12.037.
Rawe VY, Boudri HU, Alvarez Sedo C, Carro M, Papier S, Nodar F. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20(3):320–3. https://doi.org/10.1016/j.rbmo.2009.12.004.
Witt KD, Beresford L, Bhattacharya S, Brian K, Coomarasamy A, Cutting R, et al. Hyaluronic acid binding sperm selection for assisted reproduction treatment (HABSelect): study protocol for a multicentre randomised controlled trial. BMJ Open. 2016;6(10):e012609. https://doi.org/10.1136/bmjopen-2016-012609.
Mokanszki A, Tothne EV, Bodnar B, Tandor Z, Molnar Z, Jakab A, et al. Is sperm hyaluronic acid binding ability predictive for clinical success of intracytoplasmic sperm injection: PICSI vs. ICSI? Syst Biol Reprod Med. 2014;60(6):348–54. https://doi.org/10.3109/19396368.2014.948102.
Nasr-Esfahani MH, Razavi S, Vahdati AA, Fathi F, Tavalaee M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet. 2008;25(5):197–203. https://doi.org/10.1007/s10815-008-9223-4.
Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93(2):598–604. https://doi.org/10.1016/j.fertnstert.2009.03.033.
Parmegiani L, Cognigni GE, Ciampaglia W, Pocognoli P, Marchi F, Filicori M. Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet. 2010;27(1):13–6. https://doi.org/10.1007/s10815-009-9380-0.
Huang MT, Kuo-Kuang Lee R, Lu CH, Chen YJ, Li SH, Hwu YM. The efficiency of conventional microscopic selection is comparable to the hyaluronic acid binding method in selecting spermatozoa for male infertility patients. Taiwan J Obstet Gynecol. 2015;54(1):48–53. https://doi.org/10.1016/j.tjog.2014.11.006.
Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, et al. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28(2):306–14. https://doi.org/10.1093/humrep/des417.
Beck-Fruchter R, Shalev E, Weiss A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod Biomed Online. 2016;32(3):286–98. https://doi.org/10.1016/j.rbmo.2015.12.001.
Liu Y, Feenan K, Chapple V, Roberts P, Matson P. Intracytoplasmic sperm injection using hyaluronic acid or polyvinylpyrrolidone: a time-lapse sibling oocyte study. Hum Fertil (Camb). 2017;22:1–8. https://doi.org/10.1080/14647273.2017.1366077.
Erberelli RF, Salgado RM, Pereira DH, Wolff P. Hyaluronan-binding system for sperm selection enhances pregnancy rates in ICSI cycles associated with male factor infertility. JBRA Assist Reprod. 2017;21(1):2–6. https://doi.org/10.5935/1518-0557.20170002.
Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8. https://doi.org/10.1056/NEJM200110043451416.
Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17(5):617–27. https://www.ncbi.nlm.nih.gov/pubmed/18983745.
Cassuto NG, Bouret D, Plouchart JM, Jellad S, Vanderzwalmen P, Balet R, et al. A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil Steril. 2009;92(5):1616–25. https://doi.org/10.1016/j.fertnstert.2008.08.088.
Mauri AL, Petersen CG, Oliveira JB, Massaro FC, Baruffi RL, Franco JG Jr. Comparison of day 2 embryo quality after conventional ICSI versus intracytoplasmic morphologically selected sperm injection (IMSI) using sibling oocytes. Eur J Obstet Gynecol Reprod Biol. 2010;150(1):42–6. https://doi.org/10.1016/j.ejogrb.2010.01.004.
Perdrix A, Saidi R, Menard JF, Gruel E, Milazzo JP, Mace B, et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl. 2012;35(4):491–8. https://doi.org/10.1111/j.1365-2605.2012.01249.x.
Oliveira JB, Petersen CG, Massaro FC, Baruffi RL, Mauri AL, Silva LF, et al. Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles. Reprod Biol Endocrinol. 2010;8:56. https://doi.org/10.1186/1477-7827-8-56.
Boitrelle F, Guthauser B, Alter L, Bailly M, Bergere M, Wainer R, et al. High-magnification selection of spermatozoa prior to oocyte injection: confirmed and potential indications. Reprod Biomed Online. 2014;28(1):6–13. https://doi.org/10.1016/j.rbmo.2013.09.019.
Cassuto NG, Hazout A, Hammoud I, Balet R, Bouret D, Barak Y, et al. Correlation between DNA defect and sperm-head morphology. Reprod Biomed Online. 2012;24(2):211–8. https://doi.org/10.1016/j.rbmo.2011.10.006.
Perdrix A, Rives N. Motile sperm organelle morphology examination (MSOME) and sperm head vacuoles: state of the art in 2013. Hum Reprod Update. 2013;19(5):527–41. https://doi.org/10.1093/humupd/dmt021.
Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26(1):47–58. https://doi.org/10.1093/humrep/deq297.
Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26(7):1650–8. https://doi.org/10.1093/humrep/der129.
Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80(6):1413–9. https://www.ncbi.nlm.nih.gov/pubmed/14667877
Gianaroli L, Magli MC, Collodel G, Moretti E, Ferraretti AP, Baccetti B. Sperm head’s birefringence: a new criterion for sperm selection. Fertil Steril. 2008;90(1):104–12. https://doi.org/10.1016/j.fertnstert.2007.05.078.
Garolla A, Cosci I, Menegazzo M, De Palo R, Ambrosini G, Sartini B, et al. Sperm selected by both birefringence and motile sperm organelle morphology examination have reduced deoxyribonucleic acid fragmentation. Fertil Steril. 2014;101(3):647–52. https://doi.org/10.1016/j.fertnstert.2013.11.029.
Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9. https://doi.org/10.1002/adhm.201400058.
Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, et al. Microfluidics for sperm analysis and selection. Nat Rev Urol. 2017;14(12):707–30. https://doi.org/10.1038/nrurol.2017.175.
Simon L, Emery BR, Carrell DT. Review: diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56. https://doi.org/10.1016/j.bpobgyn.2017.07.003.
Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21. e1. https://doi.org/10.1016/j.fertnstert.2015.10.023.
WHO. WHO laboratory manual for the examination and processing of human semen; 2010.
Nordhoff V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology. 2015;3(2):156–62. https://doi.org/10.1111/andr.286.
Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics. 2009;2(5):322–32. https://doi.org/10.1002/jbio.200910012.
Sanchez V, Redmann K, Wistuba J, Wubbeling F, Burger M, Oldenhof H, et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil Steril. 2012;98(5):1124–9e1-3. https://doi.org/10.1016/j.fertnstert.2012.07.1059.
Fang H, Qiu L, Vitkin E, Zaman MM, Andersson C, Salahuddin S, et al. Confocal light absorption and scattering spectroscopic microscopy. Appl Opt. 2007;46(10):1760–9. https://www.ncbi.nlm.nih.gov/pubmed/17356619
Itzkan I, Qiu L, Fang H, Zaman MM, Vitkin E, Ghiran IC, et al. Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels. Proc Natl Acad Sci USA. 2007;104(44):17255–60. https://doi.org/10.1073/pnas.0708669104.
Eisenbach M, Giojalas LC. Sperm guidance in mammals – an unpaved road to the egg. Nat Rev Mol Cell Biol. 2006;7(4):276–85. https://doi.org/10.1038/nrm1893.
Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One. 2009;4(12):e8211. https://doi.org/10.1371/journal.pone.0008211.
Teves ME, Barbano F, Guidobaldi HA, Sanchez R, Miska W, Giojalas LC. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril. 2006;86(3):745–9. https://doi.org/10.1016/j.fertnstert.2006.02.080.
Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270–8. https://doi.org/10.1373/clinchem.2010.146902.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Findikli, N., Celik-Ozenci, C., Serdarogullari, M., Bahceci, M. (2020). Sperm Selection Techniques for ICSI. In: Allahbadia, G.N., Ata, B., Lindheim, S.R., Woodward, B.J., Bhagavath, B. (eds) Textbook of Assisted Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-15-2377-9_88
Download citation
DOI: https://doi.org/10.1007/978-981-15-2377-9_88
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-2376-2
Online ISBN: 978-981-15-2377-9
eBook Packages: MedicineMedicine (R0)