Skip to main content

Sperm Selection Techniques for ICSI

  • Chapter
  • First Online:
Textbook of Assisted Reproduction

Abstract

Infertility is a global health problem, affecting an estimated 50 million couples worldwide. It is generally accepted that in 30% of infertile couples, the problem is confined solely to issues related with sperm production, while in 50% of these cases, the problem is a combination of both female and male factors. Since 1992, intracytoplasmic sperm injection (ICSI) has become the technique of hope for many couples suffering from severe male infertility. In order for the ICSI approach to be effective, the preparation and selection of sperm with the highest quality is particularly important. However, current laboratory and clinical results indicate that contemporary methods and approaches are still insufficient to reproducibly prepare and/or select the optimal sperm for successful fertilization, pregnancy, and live birth. In other words, although strong research evidence suggests that the quality of the sperm can predict male fertility potential, association with the main contemporary semen analysis parameters per se is poor or remains largely unclear. This chapter discusses current approaches and their rationale, as well as laboratory and clinical efficacy in selecting the best sperm for a successful ICSI outcome. Based on the available technological knowledge, the future directions in sperm selection for ICSI are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Horst G, Maree L. Sperm form and function in the absence of sperm competition. Mol Reprod Dev. 2014;81(3):204–16. https://doi.org/10.1002/mrd.22277.

    Article  CAS  PubMed  Google Scholar 

  2. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8. https://www.ncbi.nlm.nih.gov/pubmed/1351601

  3. Krawetz SA. Paternal contribution: new insights and future challenges. Nat Rev Genet. 2005;6(8):633–42. https://doi.org/10.1038/nrg1654.

    Article  CAS  PubMed  Google Scholar 

  4. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23–37. https://doi.org/10.1093/humupd/dmi047.

    Article  CAS  PubMed  Google Scholar 

  5. Beydola T, Sharma RK, Lee W, Agarwal A. Sperm preparation and selection techniques. In: Male infertility practice. 2013. p. 244–51.

    Google Scholar 

  6. Mehta A, Sigman M. Identification and preparation of sperm for ART. Urol Clin North Am. 2014;41(1):169–80. https://doi.org/10.1016/j.ucl.2013.08.005.

    Article  PubMed  Google Scholar 

  7. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26. https://doi.org/10.1093/humupd/dmv042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod. 2013;19(8):475–85. https://doi.org/10.1093/molehr/gat025.

    Article  CAS  PubMed  Google Scholar 

  9. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36. https://doi.org/10.1016/j.fertnstert.2009.10.046.

    Article  CAS  PubMed  Google Scholar 

  10. Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9. https://doi.org/10.1016/j.fertnstert.2012.12.025.

    Article  PubMed  Google Scholar 

  11. van der Merwe FH, Kruger TF, Oehninger SC, Lombard CJ. The use of semen parameters to identify the subfertile male in the general population. Gynecol Obstet Investig. 2005;59(2):86–91. https://doi.org/10.1159/000082368.

    Article  Google Scholar 

  12. Abu Hassan Abu D, Franken DR, Hoffman B, Henkel R. Accurate sperm morphology assessment predicts sperm function. Andrologia. 2012;44(Suppl 1):571–7. https://doi.org/10.1111/j.1439-0272.2011.01229.x.

    Article  PubMed  Google Scholar 

  13. Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077–84. https://doi.org/10.1016/j.fertnstert.2008.01.015.

    Article  PubMed  Google Scholar 

  14. Kovac JR, Smith RP, Cajipe M, Lamb DJ, Lipshultz LI. Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J Androl. 2017;19(1):39–42. https://doi.org/10.4103/1008-682X.189211.

    Article  PubMed  Google Scholar 

  15. Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z. ICSI: where we have been and where we are going. Semin Reprod Med. 2009;27(2):191–201. https://doi.org/10.1055/s-0029-1202309.

    Article  PubMed  Google Scholar 

  16. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289–95. https://doi.org/10.1016/j.fertnstert.2003.09.063.

    Article  PubMed  Google Scholar 

  17. Vloeberghs V, Verheyen G, Haentjens P, Goossens A, Polyzos NP, Tournaye H. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum Reprod. 2015;30(8):1790–6. https://doi.org/10.1093/humrep/dev139.

    Article  CAS  PubMed  Google Scholar 

  18. Pereira N, O’Neill C, Lu V, Rosenwaks Z, Palermo GD. The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction. 2017;154(6):F61–70. https://doi.org/10.1530/REP-17-0344.

    Article  CAS  PubMed  Google Scholar 

  19. Belva F, Henriet S, Liebaers I, Van Steirteghem A, Celestin-Westreich S, Bonduelle M. Medical outcome of 8-year-old singleton ICSI children (born >or=32 weeks’ gestation) and a spontaneously conceived comparison group. Hum Reprod. 2007;22(2):506–15. https://doi.org/10.1093/humrep/del372.

    Article  CAS  PubMed  Google Scholar 

  20. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13. https://doi.org/10.1056/NEJMoa1008095.

    Article  CAS  PubMed  Google Scholar 

  21. Ainsworth C, Nixon B, Jansen RP, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22(1):197–200. https://doi.org/10.1093/humrep/del351.

    Article  CAS  PubMed  Google Scholar 

  22. Fleming SD, Ilad RS, Griffin AM, Wu Y, Ong KJ, Smith HC, et al. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum Reprod. 2008;23(12):2646–51. https://doi.org/10.1093/humrep/den330.

    Article  CAS  PubMed  Google Scholar 

  23. Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006;85(2):481–6. https://doi.org/10.1016/j.fertnstert.2005.07.1302.

    Article  CAS  PubMed  Google Scholar 

  24. Ortega NM, Bosch P. Methods for sperm selection for in vitro fertilization. In vitro fertilization – innovative clinical and laboratory aspects. InTech; 2012.

    Google Scholar 

  25. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87. https://doi.org/10.1016/j.biotechadv.2016.01.007.

    Article  PubMed  Google Scholar 

  26. Kheirollahi-Kouhestani M, Razavi S, Tavalaee M, Deemeh MR, Mardani M, Moshtaghian J, et al. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum Reprod. 2009;24(10):2409–16. https://doi.org/10.1093/humrep/dep088.

    Article  CAS  PubMed  Google Scholar 

  27. Nasr Esfahani MH, Deemeh MR, Tavalaee M, Sekhavati MH, Gourabi H. Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: a double-blind, randomized clinical trial. Int J Fertil Steril. 2016;10(2):253–60. https://www.ncbi.nlm.nih.gov/pubmed/27441060

  28. Said TM, Land JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 2011;17(6):719–33. https://doi.org/10.1093/humupd/dmr032.

    Article  PubMed  Google Scholar 

  29. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romany L, Garrido N, Motato Y, Aparicio B, Remohi J, Meseguer M. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102(6):1567–75. e1. https://doi.org/10.1016/j.fertnstert.2014.09.001.

    Article  PubMed  Google Scholar 

  31. Gil M, Sar-Shalom V, Melendez Sivira Y, Carreras R, Checa MA. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 2013;30(4):479–85. https://doi.org/10.1007/s10815-013-9962-8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Delbes G, Herrero MB, Troeung ET, Chan PT. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology. 2013;1(5):698–706. https://doi.org/10.1111/j.2047-2927.2013.00106.x.

    Article  CAS  PubMed  Google Scholar 

  33. Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, Chen HH, et al. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25(4):839–46. https://doi.org/10.1093/humrep/deq009.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Martin P, Dorado-Silva M, Sanchez-Martin F, Gonzalez Martinez M, Johnston SD, Gosalvez J. Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod Biomed Online. 2017;34(5):506–12. https://doi.org/10.1016/j.rbmo.2017.01.015.

    Article  PubMed  Google Scholar 

  35. Romany L, Garrido N, Cobo A, Aparicio-Ruiz B, Serra V, Meseguer M. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 2017;34(2):201–7. https://doi.org/10.1007/s10815-016-0838-6.

    Article  PubMed  Google Scholar 

  36. Polak de Fried E, Denaday F. Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using annexin V microbeads. Fertil Steril. 2010;94(1):351.e15–8. https://doi.org/10.1016/j.fertnstert.2009.12.037.

    Article  Google Scholar 

  37. Rawe VY, Boudri HU, Alvarez Sedo C, Carro M, Papier S, Nodar F. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20(3):320–3. https://doi.org/10.1016/j.rbmo.2009.12.004.

    Article  PubMed  Google Scholar 

  38. Witt KD, Beresford L, Bhattacharya S, Brian K, Coomarasamy A, Cutting R, et al. Hyaluronic acid binding sperm selection for assisted reproduction treatment (HABSelect): study protocol for a multicentre randomised controlled trial. BMJ Open. 2016;6(10):e012609. https://doi.org/10.1136/bmjopen-2016-012609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mokanszki A, Tothne EV, Bodnar B, Tandor Z, Molnar Z, Jakab A, et al. Is sperm hyaluronic acid binding ability predictive for clinical success of intracytoplasmic sperm injection: PICSI vs. ICSI? Syst Biol Reprod Med. 2014;60(6):348–54. https://doi.org/10.3109/19396368.2014.948102.

    Article  PubMed  Google Scholar 

  40. Nasr-Esfahani MH, Razavi S, Vahdati AA, Fathi F, Tavalaee M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet. 2008;25(5):197–203. https://doi.org/10.1007/s10815-008-9223-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93(2):598–604. https://doi.org/10.1016/j.fertnstert.2009.03.033.

    Article  PubMed  Google Scholar 

  42. Parmegiani L, Cognigni GE, Ciampaglia W, Pocognoli P, Marchi F, Filicori M. Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet. 2010;27(1):13–6. https://doi.org/10.1007/s10815-009-9380-0.

    Article  PubMed  Google Scholar 

  43. Huang MT, Kuo-Kuang Lee R, Lu CH, Chen YJ, Li SH, Hwu YM. The efficiency of conventional microscopic selection is comparable to the hyaluronic acid binding method in selecting spermatozoa for male infertility patients. Taiwan J Obstet Gynecol. 2015;54(1):48–53. https://doi.org/10.1016/j.tjog.2014.11.006.

    Article  PubMed  Google Scholar 

  44. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, et al. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28(2):306–14. https://doi.org/10.1093/humrep/des417.

    Article  CAS  PubMed  Google Scholar 

  45. Beck-Fruchter R, Shalev E, Weiss A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod Biomed Online. 2016;32(3):286–98. https://doi.org/10.1016/j.rbmo.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Feenan K, Chapple V, Roberts P, Matson P. Intracytoplasmic sperm injection using hyaluronic acid or polyvinylpyrrolidone: a time-lapse sibling oocyte study. Hum Fertil (Camb). 2017;22:1–8. https://doi.org/10.1080/14647273.2017.1366077.

    Article  CAS  Google Scholar 

  47. Erberelli RF, Salgado RM, Pereira DH, Wolff P. Hyaluronan-binding system for sperm selection enhances pregnancy rates in ICSI cycles associated with male factor infertility. JBRA Assist Reprod. 2017;21(1):2–6. https://doi.org/10.5935/1518-0557.20170002.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8. https://doi.org/10.1056/NEJM200110043451416.

    Article  CAS  PubMed  Google Scholar 

  49. Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17(5):617–27. https://www.ncbi.nlm.nih.gov/pubmed/18983745.

  50. Cassuto NG, Bouret D, Plouchart JM, Jellad S, Vanderzwalmen P, Balet R, et al. A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil Steril. 2009;92(5):1616–25. https://doi.org/10.1016/j.fertnstert.2008.08.088.

    Article  PubMed  Google Scholar 

  51. Mauri AL, Petersen CG, Oliveira JB, Massaro FC, Baruffi RL, Franco JG Jr. Comparison of day 2 embryo quality after conventional ICSI versus intracytoplasmic morphologically selected sperm injection (IMSI) using sibling oocytes. Eur J Obstet Gynecol Reprod Biol. 2010;150(1):42–6. https://doi.org/10.1016/j.ejogrb.2010.01.004.

    Article  PubMed  Google Scholar 

  52. Perdrix A, Saidi R, Menard JF, Gruel E, Milazzo JP, Mace B, et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl. 2012;35(4):491–8. https://doi.org/10.1111/j.1365-2605.2012.01249.x.

    Article  CAS  PubMed  Google Scholar 

  53. Oliveira JB, Petersen CG, Massaro FC, Baruffi RL, Mauri AL, Silva LF, et al. Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles. Reprod Biol Endocrinol. 2010;8:56. https://doi.org/10.1186/1477-7827-8-56.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Boitrelle F, Guthauser B, Alter L, Bailly M, Bergere M, Wainer R, et al. High-magnification selection of spermatozoa prior to oocyte injection: confirmed and potential indications. Reprod Biomed Online. 2014;28(1):6–13. https://doi.org/10.1016/j.rbmo.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  55. Cassuto NG, Hazout A, Hammoud I, Balet R, Bouret D, Barak Y, et al. Correlation between DNA defect and sperm-head morphology. Reprod Biomed Online. 2012;24(2):211–8. https://doi.org/10.1016/j.rbmo.2011.10.006.

    Article  PubMed  Google Scholar 

  56. Perdrix A, Rives N. Motile sperm organelle morphology examination (MSOME) and sperm head vacuoles: state of the art in 2013. Hum Reprod Update. 2013;19(5):527–41. https://doi.org/10.1093/humupd/dmt021.

    Article  PubMed  Google Scholar 

  57. Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26(1):47–58. https://doi.org/10.1093/humrep/deq297.

    Article  CAS  PubMed  Google Scholar 

  58. Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26(7):1650–8. https://doi.org/10.1093/humrep/der129.

    Article  CAS  PubMed  Google Scholar 

  59. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80(6):1413–9. https://www.ncbi.nlm.nih.gov/pubmed/14667877

  60. Gianaroli L, Magli MC, Collodel G, Moretti E, Ferraretti AP, Baccetti B. Sperm head’s birefringence: a new criterion for sperm selection. Fertil Steril. 2008;90(1):104–12. https://doi.org/10.1016/j.fertnstert.2007.05.078.

    Article  PubMed  Google Scholar 

  61. Garolla A, Cosci I, Menegazzo M, De Palo R, Ambrosini G, Sartini B, et al. Sperm selected by both birefringence and motile sperm organelle morphology examination have reduced deoxyribonucleic acid fragmentation. Fertil Steril. 2014;101(3):647–52. https://doi.org/10.1016/j.fertnstert.2013.11.029.

    Article  CAS  PubMed  Google Scholar 

  62. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9. https://doi.org/10.1002/adhm.201400058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, et al. Microfluidics for sperm analysis and selection. Nat Rev Urol. 2017;14(12):707–30. https://doi.org/10.1038/nrurol.2017.175.

    Article  PubMed  Google Scholar 

  64. Simon L, Emery BR, Carrell DT. Review: diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56. https://doi.org/10.1016/j.bpobgyn.2017.07.003.

    Article  PubMed  Google Scholar 

  65. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21. e1. https://doi.org/10.1016/j.fertnstert.2015.10.023.

    Article  CAS  PubMed  Google Scholar 

  66. WHO. WHO laboratory manual for the examination and processing of human semen; 2010.

    Google Scholar 

  67. Nordhoff V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology. 2015;3(2):156–62. https://doi.org/10.1111/andr.286.

    Article  CAS  PubMed  Google Scholar 

  68. Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics. 2009;2(5):322–32. https://doi.org/10.1002/jbio.200910012.

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez V, Redmann K, Wistuba J, Wubbeling F, Burger M, Oldenhof H, et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil Steril. 2012;98(5):1124–9e1-3. https://doi.org/10.1016/j.fertnstert.2012.07.1059.

    Article  CAS  PubMed  Google Scholar 

  70. Fang H, Qiu L, Vitkin E, Zaman MM, Andersson C, Salahuddin S, et al. Confocal light absorption and scattering spectroscopic microscopy. Appl Opt. 2007;46(10):1760–9. https://www.ncbi.nlm.nih.gov/pubmed/17356619

  71. Itzkan I, Qiu L, Fang H, Zaman MM, Vitkin E, Ghiran IC, et al. Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels. Proc Natl Acad Sci USA. 2007;104(44):17255–60. https://doi.org/10.1073/pnas.0708669104.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eisenbach M, Giojalas LC. Sperm guidance in mammals – an unpaved road to the egg. Nat Rev Mol Cell Biol. 2006;7(4):276–85. https://doi.org/10.1038/nrm1893.

    Article  CAS  PubMed  Google Scholar 

  73. Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One. 2009;4(12):e8211. https://doi.org/10.1371/journal.pone.0008211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Teves ME, Barbano F, Guidobaldi HA, Sanchez R, Miska W, Giojalas LC. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril. 2006;86(3):745–9. https://doi.org/10.1016/j.fertnstert.2006.02.080.

    Article  CAS  PubMed  Google Scholar 

  75. Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270–8. https://doi.org/10.1373/clinchem.2010.146902.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necati Findikli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Findikli, N., Celik-Ozenci, C., Serdarogullari, M., Bahceci, M. (2020). Sperm Selection Techniques for ICSI. In: Allahbadia, G.N., Ata, B., Lindheim, S.R., Woodward, B.J., Bhagavath, B. (eds) Textbook of Assisted Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-15-2377-9_88

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2377-9_88

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2376-2

  • Online ISBN: 978-981-15-2377-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics