Skip to main content

A State-of-the-Art Literature Review on Microelectromechanical Systems

  • Conference paper
  • First Online:
Computing Algorithms with Applications in Engineering

Abstract

Morphological analysis is a state-of-the-art emerging research topic which has attracted researchers for the dissertation in micro-machining sector. Microscopy techniques like AFM, SEM and TEM have enabled researchers to research and investigate micro-scaled features of elements in the area of microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), biomedical sensors and equipments, pharmaceutical research, micro-machining, etc. This paper reviews the brief literature based on remarkable research work done in the areas of microscopy, micro-manufacturing, smart materials and MEMS. A wide range of micro-machining applications and its alternatives has been conversed. From this literature review, gray areas for the further research have been identified. Current and emerging technology in shape memory alloy (SMA) research based on the literature has been discussed, and future scope for research in this area has been remarked. Thus, this detailed review steps forward for the researchers to acknowledge the wide area for development in micro-machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majeed A, Ramesh P (2019) Fabrication of MEMS Capacitive Pressure Sensor (MCPS) with Segmented Bossed Diaphragm. In: Sharma R, Rawal D (eds) The physics of semiconductor devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham

    Google Scholar 

  2. Wang P, Lu Q, Fan Z (2018) Cluster Comput. https://doi.org/10.1007/s10586-018-2085-3

    Article  Google Scholar 

  3. Dyuzhev NA, Gusev EE, Gryazneva TA et al (2017) Nanotechnol Russ 12:426. https://doi.org/10.1134/S1995078017040073

    Article  Google Scholar 

  4. Fallah Ghanbari B, Arabi H, Abbasi SM et al (2016) Int J Adv Manuf Technol 87:755. https://doi.org/10.1007/s00170-016-8343-8

    Article  Google Scholar 

  5. Bao J, Jeppson K, Edwards M et al (2016) Electron Mater Lett 12:1. https://doi.org/10.1007/s13391-015-5308-2

    Article  Google Scholar 

  6. Natarajan U, Suganthi XH, Periyanan PR (2016) Trans Indian Inst Met 69:1675. https://doi.org/10.1007/s12666-016-0828-5

    Article  Google Scholar 

  7. Cheng J, Jin Y, Wu J et al (2016) Int J Adv Manuf Technol 86:2197. https://doi.org/10.1007/s00170-015-8312-7

    Article  Google Scholar 

  8. Anand RS, Patra K, Steiner M et al (2017) Int J Adv Manuf Technol 88:241. https://doi.org/10.1007/s00170-016-8632-2

    Article  Google Scholar 

  9. Smith J, Xiong W, Yan W et al (2016) Comput Mech 57:583. https://doi.org/10.1007/s00466-015-1240-4

    Article  Google Scholar 

  10. Hussein M, Aadim K, Hassan E (2016) Structural and surface morphology analysis of copper phthalocyanine thin film prepared by pulsed laser deposition and thermal evaporation techniques. Adv Mater Phys Chem 6:85–97. https://doi.org/10.4236/ampc.2016.64009

    Article  Google Scholar 

  11. Xu X, Zhang S (2015). https://doi.org/10.2991/icmra-15.2015.221

  12. Lei MK, Zhu XP, Li YP et al (2016) Int J Adv Manuf Technol 82:1831. https://doi.org/10.1007/s00170-015-7467-6

    Article  Google Scholar 

  13. Sahli M, Lebied A, Gelin JC et al (2015) Int J Adv Manuf Technol 79:2079. https://doi.org/10.1007/s00170-015-6983-8

    Article  Google Scholar 

  14. Lee SJ, Takahashi M, Kawahito Y et al (2015) Int J Precis Eng Manuf 16:2121. https://doi.org/10.1007/s12541-015-0274-z

    Article  Google Scholar 

  15. Xiong W, Zhou Y, Hou W et al (2015) Front Optoelectron 8:351. https://doi.org/10.1007/s12200-015-0481-3

    Article  Google Scholar 

  16. Suganthi XH, Natarajan U, Ramasubbu N (2015) Int J Adv Manuf Technol 81:199. https://doi.org/10.1007/s00170-015-6900-1

    Article  Google Scholar 

  17. Cecil J, Bharathi Raj Kumar MB, Lu Y et al (2016) Int J Adv Manuf Technol 83: 1569. https://doi.org/10.1007/s00170-015-7698-6

    Article  Google Scholar 

  18. Park C, Shin BS, Kang MS et al (2015) Int J Precis Eng Manuf 16:1385. https://doi.org/10.1007/s12541-015-0182-2

    Article  Google Scholar 

  19. Chiou AH, Tsao CC, Hsu CY (2015) Int J Adv Manuf Technol 78:1857. https://doi.org/10.1007/s00170-014-6778-3

    Article  Google Scholar 

  20. Khanghah SP, Boozarpoor M, Lotfi M et al (2015) Trans Indian Inst Met 68:897. https://doi.org/10.1007/s12666-015-0525-9

    Article  Google Scholar 

  21. Huo D, Lin C, Choong ZJ et al (2015) Int J Adv Manuf Technol 81:1319. https://doi.org/10.1007/s00170-015-7308-7

    Article  Google Scholar 

  22. Krestinin AV, Dremova NN, Knerel’man EI et al (2015) Nanotechnol Russia 10:537. https://doi.org/10.1134/S1995078015040096

    Article  Google Scholar 

  23. Aišman D, Mašek B, Jeníček Š (2014) Unconventional microstructures in tool steel obtained by semi-solid processing and subsequent heat treatment. Solid State Phenom 217–218:235–240 (2015)

    Article  Google Scholar 

  24. Vella PC, Dimov SS, Brousseau E et al (2015) Int J Adv Manuf Technol 76:523. https://doi.org/10.1007/s00170-014-6148-1

    Article  Google Scholar 

  25. Kaushik A, Kumar R, Huey E et al (2014) Microchim Acta 181:1759. https://doi.org/10.1007/s00604-014-1255-0

    Article  Google Scholar 

  26. Hua L, Fang Z, Li M et al (2014) Wuhan Univ J Nat Sci 19:93. https://doi.org/10.1007/s11859-014-0984-6

    Article  Google Scholar 

  27. Oborski P (2014) Int J Adv Manuf Technol 75:1613. https://doi.org/10.1007/s00170-014-6123-x

    Article  Google Scholar 

  28. Farshbaf Zinati R, Razfar MR (2014) Int J Adv Manuf Technol 75:979. https://doi.org/10.1007/s00170-014-6178-8

    Article  Google Scholar 

  29. Zhan Z, He N, Li L et al (2015) Int J Adv Manuf Technol 77:2095. https://doi.org/10.1007/s00170-014-6632-7

    Article  Google Scholar 

  30. Lou S, Jiang X, Scott P (2013) An efficient divide-and-conquer algorithm for morphological filters. Procedia CIRP 10:142–147

    Article  Google Scholar 

  31. Pereira A, Hernandez P, Martinez J, Perez J, Mathia T (2013) Study of morphology wear model of molds from alloys of aluminum EN AW-6082 in injection process. Key Eng Mater 554–557:844–849

    Article  Google Scholar 

  32. Nag Chaudhury J (2014) J Mater Eng Perform 23:152. https://doi.org/10.1007/s11665-013-0709-6

    Article  Google Scholar 

  33. Liu J, Jiang D, Fu Y et al (2013) Adv Manuf 1:13. https://doi.org/10.1007/s40436-013-0007-4

    Article  Google Scholar 

  34. Kumar B, Rao T (2012) AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 7(4):1881–1889

    Google Scholar 

  35. Löchte C, Kayasa J, Herrmann C, Raatz A (2012) Methods for implementing compensation strategies in micro production systems supported by a simulation approach. In: Ratchev S (eds) Precision assembly technologies and systems. IPAS 2012. IFIP advances in information and communication technology, vol 371. Springer, Berlin

    Chapter  Google Scholar 

  36. Gil R, Sánchez JA, Ortega N et al (2013) Int J Adv Manuf Technol 65:1459. https://doi.org/10.1007/s00170-012-4270-5

    Article  Google Scholar 

  37. Lee BS, Park KM, Yu WR et al (2012) Macromol Res 20:605. https://doi.org/10.1007/s13233-012-0087-1

    Article  Google Scholar 

  38. Kim HB, Hobler G, Steiger A et al (2011) Int J Precis Eng Manuf 12:893. https://doi.org/10.1007/s12541-011-0119-3

    Article  Google Scholar 

  39. Jimenez H, Mavris D (2010) An evolution of morphological analysis applications in systems engineering. In: American Institute of Aeronautics and Astronautics, 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition

    Google Scholar 

  40. Liu F, Wu J, Chen K, Xue D (2010) Morphology study by using scanning electron microscopy. In: Microscopy: science, technology, applications and education, pp 1781–1792

    Google Scholar 

  41. Zhovklyi VY, Chemeris AI, Filatova AG et al (2010) Bull Russ Acad Sci Phys 74:1034. https://doi.org/10.3103/S1062873810070312

    Article  Google Scholar 

  42. Lee HJ et al (2010) Desktop micro forming system for micro pattern on the metal substrate. In: Ratchev S (eds) Precision assembly technologies and systems. IPAS 2010. IFIP advances in information and communication technology, vol 315. Springer, Berlin

    Chapter  Google Scholar 

  43. Kibria G, Doloi B, Bhattacharyya B (2010) Int J Adv Manuf Technol 50:643. https://doi.org/10.1007/s00170-010-2527-4

    Article  Google Scholar 

  44. Saklakoglu IE, Kasman S (2011) Int J Adv Manuf Technol 54:567. https://doi.org/10.1007/s00170-010-2953-3

    Article  Google Scholar 

  45. Savanovic P, Zeiler W (2009) Morphological analysis of design concepts emergence in design meetings. In: Stanford, international conference on engineering design, ICED’09, vol 6, pp 179–188

    Google Scholar 

  46. Arenas-Alatorre J, Silva-Velazquez Y, Alva Medina A et al (2010) Appl Phys A 98:617. https://doi.org/10.1007/s00339-009-5451-4

    Article  Google Scholar 

  47. Cheng X, Wang ZG, Kobayashi S et al (2010) Int J Adv Manuf Technol 46:179. https://doi.org/10.1007/s00170-009-2094-8

    Article  Google Scholar 

  48. Brousseau EB, Dimov SS, Pham DT (2010) Int J Adv Manuf Technol 47:161. https://doi.org/10.1007/s00170-009-2214-5

    Article  Google Scholar 

  49. Shivareddy S, Bae S-E, Brankovic SR (2008) Cu surface morphology evolution during electropolishing. Electrochem Solid State Lett 11:D13–D17

    Article  Google Scholar 

  50. Liou AC, Chen RH (2006) Int J Adv Manuf Technol 28:1097. https://doi.org/10.1007/s00170-004-2455-2

    Article  Google Scholar 

  51. Desai AV, Haque MA (2005) Tribol Lett 18:13. https://doi.org/10.1007/s11249-004-1700-z

    Article  Google Scholar 

  52. Senf B, Mäder T, y de Sosa IN, Bucht A, Knobloch M, Löpitz D, Drossel WG (2017) Sensing and actuating functions by shape memory alloy wires integrated into fiber reinforced plastics. Procedia CIRP 66:249–253

    Article  Google Scholar 

  53. Alaneme K, Okotete E (2016) Reconciling viability and cost-effective shape memory alloy options—a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 19:1582–1592

    Article  Google Scholar 

  54. Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5:245–254

    Article  Google Scholar 

  55. Quan D, Hai X (2015) Shape memory alloy in various aviation field. Procedia Eng 99:1241–1246

    Article  Google Scholar 

  56. Lobo PS, Almeida J, Guerreiro L (2015) Shape memory alloys behaviour: a review. Procedia Eng 114:776–783. https://doi.org/10.1016/j.proeng.2015.08.025

    Article  Google Scholar 

  57. Prashantha S, Mallikarjun US, Shashidhara SM (2014) Procedia Mater Sci 5:567–574. https://doi.org/10.1016/j.mspro.2014.07.301

    Article  Google Scholar 

  58. Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall 2011, Article ID 501483, 15 p. https://doi.org/10.1155/2011/501483

    Article  Google Scholar 

  59. Dönmez B, Özkan B (2011) Design and control of a shape memory alloy actuator for flap type aerodynamic surfaces. In: Proceedings of 18th world congress IFAC, Milano, Italy, Sept 2011

    Google Scholar 

  60. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Mater Today 13:54–61

    Article  Google Scholar 

  61. Song G, Ma N, Li H-N (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266–1274

    Article  Google Scholar 

  62. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3)

    Google Scholar 

Download references

Acknowledgements

We are very thankful to various researchers whose work was of utmost importance for the formation of this review. Credit is given to them for their valuable share of the research in the field of micro-machining and MEMS. We are thankful to all.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dandgavhal, S.H., Lande, A.R., Ahmad, A. (2020). A State-of-the-Art Literature Review on Microelectromechanical Systems. In: Giri, V., Verma, N., Patel, R., Singh, V. (eds) Computing Algorithms with Applications in Engineering. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2369-4_17

Download citation

Publish with us

Policies and ethics