Skip to main content

Dietary Agents in the Prevention of Cataractogenesis: Results from Preclinical Observations

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Cataract formation is one of the foremost reasons of blindness, especially in the elderly people. The process is shown to be hastened by aldose reductase (AR) enzyme involved in catalyzing the reduction of wide-ranging aldehydes to their corresponding alcohols. Gene mutations are connected to secondary cataract formation in the aged population. Further, the age-linked cataract formation is also due to the oxidative stresses. The scientific experiments conducted with preclinical models of studies have shown that dietary agents and phytochemicals are effective in reducing and mitigating cataractogenesis by acting as inhibitors of AR, preventing the depletion of antioxidant enzymes, inhibiting lipid peroxidation, and reducing oxidative stresses. This chapter addresses the helpful properties of phytochemicals in inhibiting AR. Also, the other mechanisms of action of phytochemicals in mitigating the cataract formation are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abengózar-Vela A, Calonge M, Stern ME, González-García MJ, Enríquez-De-Salamanca A (2015) Quercetin and resveratrol decrease the inflammatory and oxidative responses in human ocular surface epithelial cells. Invest Ophthalmol Vis Sci 56(4):2709–2719

    PubMed  Google Scholar 

  • Andjelic S, Drašlar K, Hvala A, Hawlina M (2017) Anterior lens epithelium in cataract patients with retinitis pigmentosa - scanning and transmission electron microscopy study. Acta Ophthalmol 95(3):e212–e220

    PubMed  Google Scholar 

  • Baliga MS, Dsouza JJ (2011) Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 20(3):225–239

    CAS  PubMed  Google Scholar 

  • Bartolome B, Hernandez T, Bengoechea ML (1996) Determination of some structural features of procyanidins and related compounds by photodiode-array detection. J Chromatogr A 723:19–26

    CAS  Google Scholar 

  • Bola C, Bartlett H, Eperjesi F (2014) Resveratrol and the eye: activity and molecular mechanisms. Graefes Arch Clin Exp Ophthalmol 252(5):699–713

    CAS  PubMed  Google Scholar 

  • Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Resnikoff S, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR (2017) Vision Loss Expert Group. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9):e888–e897

    PubMed  Google Scholar 

  • Braakhuis AJ, Donaldson CI, Lim JC, Donaldson PJ (2019) Nutritional strategies to prevent lens cataract: current status and future strategies. Nutrients 11(5):1186

    CAS  PubMed Central  Google Scholar 

  • Brian G, Taylor H (2001) Cataract blindness--challenges for the 21st century. Bull World Health Organ 79:249–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Wang T, Wang M (2018) Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies. BMC Ophthalmol 18(1):48

    PubMed  PubMed Central  Google Scholar 

  • Chaudhury S, Ghosh I, Saha G, Dasgupta S (2015) EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2. Int J Biol Macromol 77:287–292

    CAS  PubMed  Google Scholar 

  • Chethan S, Dharmesh SM, Malleshi NG (2008) Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 16(23):10085–10090

    CAS  PubMed  Google Scholar 

  • Chhunchha B, Fatma N, Bhargavan B, Kubo E, Kumar A, Singh DP (2011) Specificity protein, Sp1-mediated increased expression of Prdx6 as a curcumin-induced antioxidant defense in lens epithelial cells against oxidative stress. Cell Death Dis 2:e234. https://doi.org/10.1038/cddis.2011.121

  • Choudhary M, Gulia Y (2011) Cassia tora its chemistry, medicinal uses and pharmacology. Pharmacol Online 3:78–96

    Google Scholar 

  • Crespo MC, Visioli F (2017) A brief review of blue- and Bilberries’ potential to curb cardio-metabolic perturbations: focus on diabetes. Curr Pharm Des 23(7):983–988

    CAS  PubMed  Google Scholar 

  • Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusinecoracana L. ) polyphenols and dietary fiber: a review. J Food Sci Technol 51:1021–1040

    CAS  PubMed  Google Scholar 

  • D’souza JJ, D’souza PP, Fazal F, Kumar A, Bhat HP, Baliga MS (2014) Anti-diabetic effects of the Indian indigenous fruit EmblicaofficinalisGaertn: active constituents and modes of action. Food Funct 5(4):635–644

    PubMed  Google Scholar 

  • Duncan G, Jacob TJ (1984) Calcium and physiology of cataract. Ciba Found Symp 106:132–152

    CAS  PubMed  Google Scholar 

  • Ferlemi AV, Makri OE, Mermigki PG, Lamari FN, Georgakopoulos CD (2016) Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: investigation of the effect on calpains, antioxidant and metal chelating properties. Exp Eye Res 145:258–268

    CAS  PubMed  Google Scholar 

  • Fletcher AE (2010) Free radicals, antioxidants and eye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration. Ophthalmic Res 44(3):191–198

    CAS  PubMed  Google Scholar 

  • Gosak M, Markovič R, Fajmut A, Marhl M, Hawlina M, Andjelić S (2015) The analysis of intracellular and intercellular calcium signaling in human anterior lens capsule epithelial cells with regard to different types and stages of the cataract. PLoS One 10(12):e0143781

    PubMed  PubMed Central  Google Scholar 

  • Goutham G, Manikandan R, Beulaja M, Thiagarajan R, Arulvasu C, Arumugam M, Setzer WN, Daglia M, Nabavi SF, Nabavi SM (2017) A focus on resveratrol and ocular problems, especially cataract: from chemistry to medical uses and clinical relevance. Biomed Pharmacother 86:232–241

    CAS  PubMed  Google Scholar 

  • Grama CN, Suryanarayana P, Patil MA, Raghu G, Balakrishna N, Kumar MN et al (2013) Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 8:e78217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha JH, Shil PK, Zhu P, Gu L, Li Q, Chung S (2014) Ocular inflammation and endoplasmic reticulum stress are attenuated by supplementation with grape polyphenols in human retinal pigmented epithelium cells and in C57BL/6 mice. J Nutr 144(6):799–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs RP, Bernstein PS (2014) Nutrient supplementation for age-related macular degeneration, cataract, and dry eye. J Ophthalmic Vis Res 9:487–493

    PubMed  PubMed Central  Google Scholar 

  • Huang R, Shi F, Lei T, Song Y, Hughes CL, Liu G (2007) Effect of the isoflavonegenistein against galactose-induced cataracts in rats. Exp Biol Med 232(1):118–125

    CAS  Google Scholar 

  • Husain I, Zameer S, Madaan T, Minhaj A, Ahmad W, Iqubaal A, Ali A, Najmi AK (2019) Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): a review. Metab Brain Dis:1–9

    Google Scholar 

  • Hytti M, Szabó D, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Petrovski G, Kauppinen A (2017) Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. J Nutr Biochem 42:37–42

    CAS  PubMed  Google Scholar 

  • Jain S, Patil UK (2010) Phytochemical and pharmacological profile of Cassia tora Linn. An over review. Indian J Nat Prod Res 1(4):430–437

    CAS  Google Scholar 

  • Jigisha A, Nishant R, Navin K, Pankaj G (2012) Green tea: a magical herb with miraculous outcomes. Int Res J Pharm 3(5):139–148

    Google Scholar 

  • Johar SR, Rawal UM, Jain NK, Vasavada AR (2003) Sequential effects of ultraviolet radiation on the histomorphology, cell density and antioxidative status of the lens epithelium – an in vivo study. Photochem Photobiol 78:306–311

    CAS  PubMed  Google Scholar 

  • Johnson SA, Arjmandi BH (2013) Evidence for anti-cancer properties of blueberries: a mini-review. Anti Cancer Agents Med Chem 13(8):1142–1148

    CAS  Google Scholar 

  • Jun G, Guo H, Klein BE, Klein R, Wang JJ, Mitchell P, Miao H, Lee KE, Joshi T, Buck M, Chugha P, Bardenstein D, Klein AP, Bailey-Wilson JE, Gong X, Spector TD, Andrew T, Hammond CJ, Elston RC, Iyengar SK, Wang B (2009) EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet 5(7):e1000584

    PubMed  PubMed Central  Google Scholar 

  • Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895

    CAS  PubMed  Google Scholar 

  • Krishnaveni M, Mirunalini S (2010) Therapeutic potential of Phyllanthusemblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol 21(1):93–105

    CAS  PubMed  Google Scholar 

  • Kumar PA, Suryanarayana P, Reddy PY, Reddy GB (2005) Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis 11:561–568

    CAS  PubMed  Google Scholar 

  • Li J, Jiang Y (2007) Litchi flavonoids: isolation, identification and biological activity. Molecules 12:745–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang D, Hu J, Liu G, Chen J, Sun L, Jiang Z, Zhang X, Chen Q, Ji B (2015) Visible light-induced lipid peroxidation of unsaturated fatty acids in the retina and the inhibitory effects of blueberry polyphenols. J Agric Food Chem 63(42):9295–9305

    CAS  PubMed  Google Scholar 

  • Liu Y, Liu GM, Cao MJ, Chen Q, Sun L, Ji B (2017) Potential retinal benefits of dietary polyphenols based on their permeability across the blood-retinal barrier. J Agric Food Chem 65(15):3179–3189

    CAS  PubMed  Google Scholar 

  • Ma X, Guo D, Bi H, Xie X, Guo J, Cui Y (2014) Protective effect of tea polyphenol ophthalmic gel on lens epithelial cells in rabbits with silicone oil tamponade after vitrectomy. Evid Based Complement Alternat Med 2014:832381

    PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Srirangam R (2010) Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J Pharm Pharmacol 62(8):951–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manikandan R, Thiagarajan R, Beulaja S, Chindhu S, Mariammal K, Sudhandiran G (2009) Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: an in vitro study using isolated lens. Chem Biol Interact 181:202–209

    CAS  PubMed  Google Scholar 

  • Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M (2010) Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium. Free Radic Biol Med 48:483–492

    CAS  PubMed  Google Scholar 

  • Manikandan R, Beulaja M, Thiagarajan R, Arumugam M (2011) Effect of curcumin on the modulation of alphaA- and alpha B-crystallin and heat shock protein 70 in selenium-induced cataractogenesis in Wistarrat pups. Mol Vis 17:388–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan P, Pari L (2006) Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci 79:1720–1728

    CAS  PubMed  Google Scholar 

  • Natarajan SB, Hwang JW, Kim YS, Kim EK, Park PJ (2017) Ocular promoting activity of grape polyphenols-a review. Environ Toxicol Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  • Ozgen SÇ, Dökmeci D, Akpolat M et al (2012) The protective effect of curcumin on ionizing radiation-induced cataractogenesis in rats. Balkan Med J 29(4):358–363

    Google Scholar 

  • Pollreisz A, Schmidt-Erfurth U (2010) Diabetic cataract—pathogenesis, epidemiology and treatment. J Ophthalmol 2010:1

    Google Scholar 

  • Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV (2012) The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 7(4):e31399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radha A, Devi Rukhmini S, Sasikala V, Sakunthala PR, Sreedharan B, Velayudhan MP et al (2012) Bioactive derivatives of curcumin attenuate cataract formation in vitro. Chem Biol Drug Des 80:887–892

    CAS  PubMed  Google Scholar 

  • Raju TN, Kumar CS, Kanth VR, Ramana BV, Reddy PU, Suryanarayana P et al (2006) Cumulative antioxidant defense against oxidative challenge in galactose-induced cataractogenesis in Wistar rats. Indian J Exp Biol 44:733–739

    CAS  PubMed  Google Scholar 

  • Reddy VN, Giblin FJ (1984) Metabolism and function of glutathione in the lens. Ciba Found Symp 106:65–87

    Google Scholar 

  • Shiels A, Bennett TM, Knopf HL, MarainiG LA, Jiao X, Hejtmancik JF (2008) The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 14:2042–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, Mohan V (2013) Finger millet (Ragi, Eleusinecoracana L. ): a review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res 69:1–39

    CAS  PubMed  Google Scholar 

  • Singleton VL (1992) Tannins and the qualities of wines. In: Laks PE, Hemingway RW (eds) Plant polyphenols. Plenum Press, New York, pp 859–880

    Google Scholar 

  • Sowmya V, Kalekhan F, Kamath K, Baliga MS (2015) Fruits in the prevention of cataractogenesis by targeting the aldose reductase: promise from preclinical observations. In: Foods and dietary supplements in the prevention and treatment of disease in older adults. Academic Press, New York, pp 105–109

    Google Scholar 

  • Sreelakshmi V, Abraham A (2016a) Anthraquinones and flavonoids of Cassia tora leaves ameliorate sodium selenite induced cataractogenesis in neonatal rats. Food Funct 7(2):1087–1095

    CAS  PubMed  Google Scholar 

  • Sreelakshmi V, Abraham A (2016b) Polyphenols of Cassia tora leaves prevents lenticular apoptosis and modulates cataract pathology in Sprague-Dawley rat pups. Biomed Pharmacother 81:371–378

    CAS  PubMed  Google Scholar 

  • Suryanarayana P, Krishnaswamy K, Reddy GB (2003) Effect of curcumin on galactose-induced cataractogenesis in rats. Mol Vis 9:223–230

    Google Scholar 

  • Suryanarayana P, Kumar PA, Saraswat M, Petrash JM, Reddy GB (2004) Inhibition of aldosereductase by tannoid principles of emblicaofficinalis: implications for the preventionof sugar cataract. Mol Vis 10:148–154

    CAS  PubMed  Google Scholar 

  • Suryanarayana P, Saraswat M, Mrudula T, Krishna TP, Krishnaswamy K, Reddy GB (2005) Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46:2092–2099

    PubMed  Google Scholar 

  • Suryanarayana P, Saraswat M, Petrash JM, Reddy GB (2007) Emblicaofficinalis and its enriched tannoids delay streptozotocin induced diabetic cataract in rats. Mol Vis 13:1291–1297

    CAS  PubMed  Google Scholar 

  • Tavani A, Negri E, La Vecchia C (1996) Food and nutrient intake and risk of cataract. Ann Epidemiol 6(1):41–46

    CAS  PubMed  Google Scholar 

  • Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverria J, Vodnar D, Szabo B (2019) Medicinal plants and natural products used in cataract management. Front Pharmacol:10

    Google Scholar 

  • Thichanpiang P, Wongprasert K (2015) Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells. Am J Chin Med 43(1):103–119

    CAS  PubMed  Google Scholar 

  • Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS (2013) Hepatoprotective properties of the Indian gooseberry (EmblicaofficinalisGaertn): a review. Food Funct 4(10):1431–1441

    CAS  PubMed  Google Scholar 

  • Truscott RJ (2005) Age- related nuclear cataract – oxidation is the key. Exp Eye Res 80(5):709–725

    CAS  Google Scholar 

  • Van Duyn MA, Pivonka E (2000) Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J Am Diet Assoc 100(12):1511–1521

    PubMed  Google Scholar 

  • Variya BC, Bakrania AK, Patel SS (2016) Emblicaofficinalis (Amla): a review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 111:180–200

    CAS  PubMed  Google Scholar 

  • Vashist P, Talwar B, Gogoi M, Maraini G, Camparini M, Ravindran RD, Murthy GV, Fitzpatrick KE, John N, Chakravarthy U, Ravilla TD, Fletcher AE (2011) Prevalence of cataract in an older population in India: the India study of age-related eye disease. Ophthalmology 118(2):272–278

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kim HJ, Sparrow JR (2017) Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp Eye Res 160:45–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weikel KA, Garber C, Baburins A, Taylor A (2014) Nutritional modulation of cataract. Nutr Rev 72:30–47

    PubMed  Google Scholar 

  • Yamakoshi J, Saito M, Kataoka S, Tokutake S (2002) Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J Agric Food Chem 50(17):4983–4988

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’souza, M. et al. (2020). Dietary Agents in the Prevention of Cataractogenesis: Results from Preclinical Observations. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-2361-8_12

Download citation

Publish with us

Policies and ethics