Skip to main content

Pathogenesis, Genetics, and Molecular Developments in Vascular Lesion Therapy and Diagnosis

  • Chapter
  • First Online:
Management of Head and Neck Vascular Lesions

Abstract

Within the past decade, the genetic etiology of HNLM and other rare overgrowth conditions have been explored and have led to a better understanding of the formation of these lesions, why treatment has not always been effective, and possible new treatment options. Genetic mutations can be divided into somatic or germline mutations. Germline mutations are alterations in the genetic sequence of the gamete, involve all cells in the organism, and can be passed on to future generations. Somatic mutations are post-zygotic DNA variations occurring after fertilization that are more difficult to detect without the use of advanced DNA sequencing technologies.

The most commonly identified mutations found in vascular anomalies involve the tyrosine kinase receptor signaling pathway. Through this signaling, the RAS or phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway can be activated. The most commonly associated mutation in HNLM is a postzygotic somatic mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) gene. Three locations or “hotspots” within PIK3CA are frequently involved in sporadic human cancers and are thought to enhance tissue overgrowth. Samples of affected tissue from patients with isolated HNLM, CLOVES, KTS, or fibro adipose hyperplasia are required to detect PIK3CA hotspot mutations. The majority of the tissue samples revealed activating hotspot mutations in PIK3CA. Interestingly, these exact same mutations are some of the most commonly identified mutations in a large number of human cancers. It is unknown why PIK3CA mutations that occur during early embryonic development can lead to mosaic, vascular overgrowth phenotypes, and yet the exact same mutations occurring in adult tissues can promote tumorigenesis. Clearly, there is much to discover regarding the molecular pathophysiology of these entities. Future work is necessary to understand the molecular pathophysiology of PIK3CA and how it contributes to a variety of rare conditions that occur throughout the body, not just the head and neck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brouillard P, Vikkula M. Vascular malformations: localized defects in vascular morphogenesis. Clin Genet. 2003;63:340.

    Article  CAS  PubMed  Google Scholar 

  2. Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21:154.

    Article  CAS  PubMed  Google Scholar 

  3. Holmes LB. Chorionic villus sampling and hemangiomas. J Craniofac Surg. 2009;1(20 Suppl):675.

    Article  Google Scholar 

  4. Pocock B, Boon LM, Vikkula M. Molecular basis of vascular birthmarks. Sem Plast Surg. 2006;20:149.

    Article  Google Scholar 

  5. Jinnin M, Medici D, Park L, et al. Suppressed NFAT- dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med. 2008;14:1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bischoff J. Progenitor cells in infantile hemangioma. J Craniofac Surg. 2009;20(Suppl 1):695.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg. 1982;69:412.

    Article  CAS  PubMed  Google Scholar 

  8. Chang LC, Haggstrom AN, Drolet BA, et al. Growth characteristics of infantile hemangiomas: implications for management. Pediatrics. 2008;122:360.

    Article  PubMed  Google Scholar 

  9. Enjolras O, Mulliken JB. The current management of vascular birthmarks. Pediatr Dermatol. 1993;10:311.

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Perez D, Fein NA, Boon LM, et al. Not all hemangiomas look like strawberries: uncommon presentations of the most common tumor of infancy. Pediatr Dermatol. 1995;12:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Nair SC, Spencer NJ, Nayak KP, Balasubramaniam K. Surgical management of vascular lesions of the head and neck: a review of 115 cases. Int J Oral Maxillofac Surg. 2011;40(6):577–83.

    Article  CAS  PubMed  Google Scholar 

  12. Boon LM, Mulliken JB, Enjolras O, et al. Glomuvenous malformation (glomangioma) and venous mal- formation: distinct clinicopathologic and genetic entities. Arch Dermatol. 2004;140:971.

    Article  PubMed  Google Scholar 

  13. Dompmartin A, Acher A, Thibon P, et al. Association of localized intravascular coagulopathy with venous malformations. Arch Dermatol. 2008;144:873.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dompmartin A, Bailleux F, Thibon P, et al. Elevated D-dimer level is diagnostic for venous malformations. Arch Dermatol. 2009;145:1239–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wouters V, Limaye N, Uebelhoer M, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper- phosphorylating effects. Eur J Hum Genet. 2010;18(4):414–20.

    Article  CAS  PubMed  Google Scholar 

  16. Boon LM, Mulliken JB, Vikkula M, et al. Assignment of a locus for dominantly inherited venous malformations to chromosome 9p. Hum Mol Genet. 1994;3:1583.

    Article  CAS  PubMed  Google Scholar 

  17. Vikkula M, Boon LM, Carraway KL 3rd, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996;87:1181.

    Article  CAS  PubMed  Google Scholar 

  18. Mulliken JB. Vascular anomalies. In: Aston SJ, Beasley RW, Thorne CHM, editors. Grabb and Smith’s plastic surgery. Philadelphia: Lippincott-Raven; 1997. p. 191–204.

    Google Scholar 

  19. Marler JJ, Fishman SJ, Upton J, et al. Prenatal diagnosis of vascular anomalies. J Pediatr Surg. 2002;37:318–26.

    Article  PubMed  Google Scholar 

  20. Tunc M, Sadri E, Char DH. Orbital lymphangioma: an analysis of 26 patients. Br J Ophthalmol. 1999;83:76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mulliken JB, Young A. Vascular birthmarks: hemangiomas and malformations. Philadelphia: WB Saunders; 1988.

    Google Scholar 

  22. Brouillard P, Vikkula M. Genetic causes of vascular malformations. Hum Mol Genet. 2007;16(Spec No. 2):R140.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs AH, Walton RG. The incidence of birthmarks in the neonate. Pediatrics. 1976;58:218–22.

    Article  CAS  PubMed  Google Scholar 

  24. Enjolras O, Riche MC, Merland JJ. Facial port-wine stains and Sturge-Weber syndrome. Pediatrics. 1985;76:48–51.

    CAS  PubMed  Google Scholar 

  25. Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41:118.

    Article  CAS  PubMed  Google Scholar 

  26. Boon LM, Brouillard P, Irrthum A, et al. A gene for inherited cutaneous venous anomalies (“glomangiomas”) localizes to chromosome 1p21-22. Am J Hum Genet. 1999;65:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gault J, Shenkar R, Recksiek P, et al. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke. 2005;36:872.

    Article  PubMed  Google Scholar 

  28. Pagenstecher A, Stahl S, Sure U, et al. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet. 2009;18:911.

    Article  CAS  PubMed  Google Scholar 

  29. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53.

    Article  CAS  PubMed  Google Scholar 

  30. Padia R, Zenner K, Bly R, Bennett J, Bull C, Perkins J. Clinical application of molecular genetics in lymphatic malformations. Laryngoscope Investig Otolaryngol. 2019;4(1):170–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greene AK, Goss JA. Vascular anomalies: from a clinicohistologic to a genetic framework. Plast Reconstr Surg. 2018;141:709e–17e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinross KM, Montgomery KG, Kleinschmidt M. An activating PIK3CA mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J Clin Invest. 2012;122:553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samuels Y, Wang Z, Bardelli A. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  CAS  PubMed  Google Scholar 

  34. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006;18:77–82.

    Article  CAS  PubMed  Google Scholar 

  35. Luks VL, Kamitaki N, Vivero MP. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(1048–1054):e1041–5.

    Google Scholar 

  36. Keppler-Noreuil KM, Rios JJ, Parker VE. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A:287–95.

    Article  PubMed  CAS  Google Scholar 

  37. Balakrishnan K, Menezes MD, Chen BS, Magit AE, Perkins JA. Primary surgery vs primary sclerotherapy for head and neck lymphatic malformations. JAMA Otolaryngol Head Neck Surg. 2014;140:41–5.

    Article  PubMed  Google Scholar 

  38. Odeyinde SO, Kangesu L, Badran M. Sclerotherapy for vascular malformations: complications and a review of techniques to avoid them. J Plast Reconstr Aesthet Surg. 2013;66:215–23.

    Article  CAS  PubMed  Google Scholar 

  39. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–37.

    Article  CAS  PubMed  Google Scholar 

  40. Sasongko TH, Ismail NF, Zabidi-Hussin Z. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev. 2016;7:CD011272.

    PubMed  Google Scholar 

  41. Alemi AS, Rosbe KW, Chan DK, Meyer AK. Airway response to sirolimus therapy for the treatment of complex pediatric lymphatic malformations. Int J Pediatr Otorhinolaryngol. 2015;79:2466–9.

    Article  PubMed  Google Scholar 

  42. Cramer SL, Wei S, Merrow AC, Pressey JG. Gorham-Stout disease success- fully treated with Sirolimus and zoledronic acid therapy. J Pediatr Hematol Oncol. 2016;38:e129–32.

    Article  CAS  PubMed  Google Scholar 

  43. Dvorakova V, Rea D, O'Regan GM, Irvine AD. Generalized lymphatic anomaly successfully treated with long-term, low-dose Sirolimus. Pediatr Dermatol. 2018;35(4):533–4.

    Article  PubMed  Google Scholar 

  44. Lackner H, Karastaneva A, Schwinger W, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174:1579–84.

    Article  CAS  PubMed  Google Scholar 

  45. Laforgia N, Schettini F, De Mattia D, Martinelli D, Ladisa G, Favia V. Lymphatic malformation in newborns as the first sign of diffuse lymphangiomatosis: successful treatment with sirolimus. Neonatology. 2016;109:52–5.

    Article  CAS  PubMed  Google Scholar 

  46. Lagreze WA, Joachimsen L, Gross N, Taschner C, Rossler J. Sirolimus-induced regression of a large orbital lymphangioma. Orbit. 2018;38:1–2.

    Google Scholar 

  47. Yesil S, Tanyildiz HG, Bozkurt C, Cakmakci E, Sahin G. Single-center experience with sirolimus therapy for vascular malformations. Pediatr Hematol Oncol. 2016;33:219–25.

    Article  CAS  PubMed  Google Scholar 

  48. Yesil S, Bozkurt C, Tanyildiz HG, et al. Successful treatment of macroglossia due to lymphatic malformation with sirolimus. Ann Otol Rhinol Laryngol. 2015;124:820–3.

    Article  PubMed  Google Scholar 

  49. Strychowsky JE, Rahbar R, O'Hare MJ, Irace AL, Padua H, Trenor CC 3rd. Sirolimus as treatment for 19 patients with refractory cervicofacial lymphatic malformation. Laryngoscope. 2018;128:269–76.

    Article  CAS  PubMed  Google Scholar 

  50. Czechowicz JA, Long-Boyle JR, Rosbe KW, Mathes EF, Frieden IJ, Shimano KA. Sirolimus for management of complex vascular anomalies - A proposed dosing regimen for very young infants. Int J Pediatr Otorhino Laryngol. 2018;105:48–51.

    Article  Google Scholar 

  51. Venot Q, Blanc T, Rabia SH. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558:540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balakrishnan K, Bauman N, Chun RH, et al. Standardized outcome and reporting measures in pediatric head and neck lymphatic malformations. Otolaryngol Head Neck Surg. 2015;152:948–53.

    Article  PubMed  Google Scholar 

  53. Mulliken JB, Fishman DJ. Mulliken and Young's vascular anomalies: hemangiomas and malformations. 2nd ed. New York: Oxford University Press; 2013.

    Book  Google Scholar 

  54. Queisser A, Boon LM, MD, Vikkula M. Etiology and genetics of congenital vascular lesions. Otolaryngol Clin N Am. 2018;51:41–53.

    Article  Google Scholar 

  55. Boscolo E, Limaye N, Huang L, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest. 2015;125(9):3491–504.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Adams DM, Trenor CC 3rd, Hammill AM. Efficacy and safety of Sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Welsh SJ, Corrie PG. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol. 2015;7(2):122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tillet E, Bailly S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet. 2014;5:456.

    PubMed  Google Scholar 

  59. Ola R, Dubrac A, Han J, et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun. 2016;7:13650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ardelean DS, Letarte M. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Peng HL, Yi YF, Zhou SK. Thalidomide effects in patients with hereditary hemorrhagic telangiectasia during therapeutic treatment and in Fli-EGFP trans- genic zebrafish model. Chin Med J. 2015;128(22):3050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thompson AB, Ross DA, Berard P, et al. Very low dose bevacizumab for the treatment of epistaxis in patients with hereditary hemorrhagic telangiectasia. Allergy Rhinol (Providence). 2014;5(2):91–5.

    Article  Google Scholar 

  63. Uebelhoer M, Boon LM, Vikkula M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb Perspect Med. 2012;2(8):a009688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa R. Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, S.R., Kumar, B., Shroff, S., Nair, S.C. (2022). Pathogenesis, Genetics, and Molecular Developments in Vascular Lesion Therapy and Diagnosis. In: Nair, S.C., Chandra, S.R. (eds) Management of Head and Neck Vascular Lesions. Springer, Singapore. https://doi.org/10.1007/978-981-15-2321-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2321-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2320-5

  • Online ISBN: 978-981-15-2321-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics