Skip to main content

Theory for Thermal Radiation: Transparency, Cloak, and Expander

  • Chapter
  • First Online:
Theoretical Thermotics
  • 939 Accesses

Abstract

The existing thermal metamaterials are almost designed to work at room temperature where thermal conduction is the dominant way of heat transfer. Unfortunately, as the temperature increases, thermal radiation becomes more and more important, and hence these metamaterials no longer work. The inability to handle thermal radiation largely limits practical applications at high temperature, such as thermal protection. To solve this problem, here we describe an effective medium theory to manipulate thermal radiation with the Rosseland diffusion approximation. This theory helps to design three types of radiative metamaterials even with anisotropic geometries, including transparency, cloak, and expander. Theoretical analyses are further confirmed by finite-element simulations, which indicate that these radiative metamaterials perform well at both steady and transient states. This chapter not only introduces an effective medium theory to manipulate thermal radiation, but also designs three types of radiative metamaterials. These results may provide hints on novel thermal management and have potential applications in radiative illusion/camouflage, radiative diode, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  2. He, X., Wu, L.Z.: Thermal transparency with the concept of neutral inclusion. Phys. Rev. E 88, 033201 (2013)

    Article  ADS  Google Scholar 

  3. Zeng, L.W., Song, R.X.: Experimental observation of heat transparency. Appl. Phys. Lett. 104, 201905 (2014)

    Article  ADS  Google Scholar 

  4. Yang, T.Z., Bai, X., Gao, D.L., Wu, L.Z., Li, B.W., Thong, J.T.L., Qiu, C.W.: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015)

    Article  Google Scholar 

  5. Xu, L.J., Yang, S., Huang, J.P.: Thermal transparency induced by periodic interparticle interaction. Phys. Rev. Appl. 11, 034056 (2019)

    Article  ADS  Google Scholar 

  6. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  7. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  8. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  9. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  10. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  11. Li, Y., Zhu, K.J., Peng, Y.G., Li, W., Yang, T.Z., Xu, H.X., Chen, H., Zhu, X.F., Fan, S.H., Qiu, C.W.: Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18, 48–54 (2019)

    Article  ADS  Google Scholar 

  12. Han, T.C., Yang, P., Li, Y., Lei, D.Y., Li, B.W., Hippalgaonkar, K., Qiu, W.: Full-parameter omnidirectional thermal metadevices of anisotropic geometry. Adv. Mater. 30, 1804019 (2018)

    Article  Google Scholar 

  13. Guenneau, S., Petiteau, D., Zerrad, M., Amra, C., Puvirajesinghe, T.: Transformed Fourier and Fick equations for the control of heat and mass diffusion. AIP Adv. 5, 053404 (2015)

    Article  ADS  Google Scholar 

  14. Dai, G.L., Shang, J., Huang, J.P.: Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018)

    Article  ADS  Google Scholar 

  15. Dai, G.L., Huang, J.P.: A transient regime for transforming thermal convection: cloaking, concentrating, and rotating creeping flow and heat flux. J. Appl. Phys. 124, 235103 (2018)

    Article  ADS  Google Scholar 

  16. Li, Y., Peng, Y.G., Han, L., Miri, M.A., Li, W., Xiao, M., Zhu, X.F., Zhao, J.L., Alu, A., Fan, S.H., Qiu, C.W.: Anti-parity-time symmetry in diffusive systems. Science 364, 170–173 (2019)

    ADS  MathSciNet  Google Scholar 

  17. Raman, A.P., Anoma, M.A., Zhu, L.X., Rephaeli, E., Fan, S.H.: Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    Article  ADS  Google Scholar 

  18. Zhai, Y., Ma, Y.G., David, S.N., Zhao, D.L., Lou, R.N., Tan, G., Yang, R.G., Yin, X.B.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)

    Article  ADS  Google Scholar 

  19. Chen, Z., Zhu, Z.X., Li, W., Fan, S.H.: Simultaneously and synergistically harvest energy from the sun and outer space. Joule 3, 1 (2018)

    Google Scholar 

  20. Kubytskyi, V., Biehs, S.-A., Ben-Abdallah, P.: Radiative bistability and thermal memory. Phys. Rev. Lett. 113, 074301 (2014)

    Article  ADS  Google Scholar 

  21. Ordonez-Miranda, J., Ezzahri, Y., Tiburcio-Moreno, J.A., Joulain, K., Drevillon, J.: Radiative thermal memristor. Phys. Rev. Lett. 123, 025901 (2019)

    Article  ADS  Google Scholar 

  22. Milton, G.W.: The Theory of Composites. Cambridge University Press (2004)

    Google Scholar 

  23. Xu, L.J., Wang, R.Z., Huang, J.P.: Camouflage thermotics: a cavity without disturbing heat signatures outside. J. Appl. Phys. 123, 245111 (2018)

    Article  ADS  Google Scholar 

  24. Li, B.W., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  25. Li, B.W., Wang, L., Casati, G.: Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  26. Wang, L., Li, B.W.: Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  27. Li, N.B., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.W.: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012)

    Article  ADS  Google Scholar 

  28. Bao, H., Chen, J., Gu, X.K., Cao, B.Y.: A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ. 1, 16 (2018)

    Google Scholar 

  29. Ben-Abdallah, P., Biehs, S.-A.: Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014)

    Article  ADS  Google Scholar 

  30. Fernandez-Hurtado, V., Garcia-Vidal, F.J., Fan, S.F., Cuevas, J.C.: Enhancing near-field radiative heat transfer with Si-based metasurfaces. Phys. Rev. Lett. 118, 203901 (2017)

    Article  ADS  Google Scholar 

  31. Ghashami, M., Geng, H.Y., Kim, T., Iacopino, N., Cho, S.K., Park, K.: Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018)

    Article  ADS  Google Scholar 

  32. Papadakis, G.T., Zhao, B., Buddhiraju, S., Fan, S.H.: Gate-tunable near-field heat transfer. ACS Photonics 6, 709 (2019)

    Article  Google Scholar 

  33. Hu, R., Zhou, S.L., Li, Y., Lei, D.Y., Luo, X.B., Qiu, C.W.: Illusion thermotics. Adv. Mater. 30, 1707237 (2018)

    Article  Google Scholar 

  34. Qu, Y.R., Li, Q., Cai, L., Pan, M.Y., Ghosh, P., Du, K.K., Qiu, M.: Thermal camouflage based on the phasechanging material GST. Light-Sci. Appl. 7, 26 (2018)

    Article  ADS  Google Scholar 

  35. Li, Y., Bai, X., Yang, T.Z., Luo, H., Qiu, C.W.: Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018)

    Article  ADS  Google Scholar 

  36. Xu, L.J., Yang, S., Huang, J.P.: Thermal theory for heterogeneously architected structure: fundamentals and application. Phys. Rev. E 98, 052128 (2018)

    Article  ADS  Google Scholar 

  37. Xu, L.J., Yang, S., Huang, J.P.: Designing the effective thermal conductivity of materials of core-shell structure: theory and simulation. Phys. Rev. E 99, 022107 (2019)

    Article  ADS  Google Scholar 

  38. Xu, L.J., Yang, S., Huang, J.P.: Passive metashells with adaptive thermal conductivities: Chameleonlike behavior and its origin. Phys. Rev. Appl. 11, 054071 (2019)

    Article  ADS  Google Scholar 

  39. Xu, L.J., Huang, J.P.: Metamaterials for manipulating thermal radiation: transparency, cloak, and expander. Phys. Rev. Appl. 12, 044048 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Theory for Thermal Radiation: Transparency, Cloak, and Expander. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2301-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2300-7

  • Online ISBN: 978-981-15-2301-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics