Skip to main content

An Application of High Temperature Gas Nitriding (HTGN) Method to Improve the Quality of Implant Materials 316L and 316LVM

  • Conference paper
  • First Online:
NAC 2019

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 242))

  • 290 Accesses

Abstract

This paper presents an application of high temperature gas nitriding (HTGN) method to enhance the material properties of implant materials 316L and 316LVM. The HTGN method is applied to 316L and 316LVM materials at 1050, 1100 and 1200 °C. Three different holding times for HTGN method were varied up to 15, 30 and 60 min to have different comparison results. This research observed that grain size, nitrogen content, hardness, corrosion rate and non-magnetic stability increase as increase of temperature and holding time. The lowest corrosion rate is obtained at 1050 °C and 15 min treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Uggowitzer, R. Magdowski, M.O. Spidel, Nickel free high nitrogen austenitic stainless steel. ISIJ Int. 36(7), 901–908 (1996)

    Article  Google Scholar 

  2. K. Yang, Y. Ren, Nickel free austenitic stainless steel for medical application. Sci. Technol. Adv. Mater. 11, 1–13 (2010)

    Article  Google Scholar 

  3. S. Desai, B. Biandda, P. Bartalo, Metallic and ceramic biomaterial: current and future developments, in Bio-Materials and Prototyping Applications in Medicine, ed. by B. Bartolo, B. Biandda (Springer Science, 2008)

    Google Scholar 

  4. S. Ahmadi, H. Arabi, A. Shokuhfar, A. Rezer, Evaluation of the electroslag remelting process in medical grade of 316LC stainless steel. J. Mater. Sci. Technol. 25(5), 592–596 (2009)

    Google Scholar 

  5. M.O. Dionisyo, M. Campos, O.Z. Higa, T.E. Cunha, S.D. de Souza, Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel. Mater. Res. 16(5), 1052–1057 (2013)

    Article  Google Scholar 

  6. M. Martinesi, S. Bruni, M. Stio, C. Treves, T. Bacciand, F. Borgioli, Biocompatibility evaluation of surface treated AISI 316L austenitic stainless steel in human cell cultures. J. Biomed. Mater. Res. 80, 131–145 (2007)

    Article  Google Scholar 

  7. H. Berns, Advantages in solution nitriding of stainless steel. Mater. Sci. Heat Treat. 49(11–12), 578–580 (2007)

    Article  ADS  Google Scholar 

  8. R.L.O. Basso, V.L. Pimentel, S. Weber, G. Marcos, T. Czewiec, Magnetic and structural properties of ion nitrided stainless steel. J. Appl. Phys. 105, 124914-1–124914-5 (2009)

    Article  ADS  Google Scholar 

  9. O. Ozturk, S. Okurand, J.P. Riviere, Structural and magnetic characterization of plasma ion nitrided layer on 316L stainless steel aloy. Nucl. Instrum. Methods Phys. Res. B 67, 1540–1545 (2009)

    Article  ADS  Google Scholar 

  10. A. Holton, E. Walsh, A. Anayiotos, G. Pohostand, R. Venugopalan, Comparative MRI compatibility of 316L stainless steel alloy and nickel-titanium alloy stent. Cardiovas. Magn. Reson. 4(4), 423–430 (2002)

    Article  Google Scholar 

  11. F.G. Shellock, Biomedical implants and devices: assessment of magnetic field interaction with a 3.0-Tesla MR system. J. Magn. Reson. Imaging 16, 721–732 (2002)

    Article  Google Scholar 

  12. D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, M. Kobayashi, New manufacturing process of nickel free austenitic stainless steel with nitrogen absorption treatment. Mater. Trans. 44(3), 414–420 (2003)

    Article  Google Scholar 

  13. A. Suprihanto, S. Suyitno, R. Dharmastiti, Corrosion resistance of AISI 316L after short holding time of high temperature gas nitriding (HTGN). Chem. Mater. Res. 3(2), 1–7 (2013)

    Google Scholar 

  14. N. Hirota, F. Yin, T. Inoue, T. Azuma, Recrystalization and grain growth behavior in severe cold rolling deformed SUS316L under an isothermal annealing condition. ISIJ Int. 48(4), 475–482 (2008)

    Article  Google Scholar 

  15. B.P. Kasyap, K. Tangri, Grain growth behaviour of type 316L stainless steel. Mater. Sci. Eng., A A149, L13–L16 (1992)

    Article  Google Scholar 

  16. T. Tsuchiyama, T. Fukumaru, M. Egashira, S. Endo, Calculation of nitrogen absorption into austenitic stainless steel plate and wire. ISIJ Int. 44(6), 1121–1123 (2004)

    Article  Google Scholar 

  17. Y. Turan, A. Koursaris, The effect of nitrogen additions on the structure and properties of AISI 310S stainless steel. J. South Afr. Inst. Min. Metal. 347–353 (1995)

    Google Scholar 

  18. Y.Z. Shen, K.H. Oh, D.N. Lee, Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath. Mater. Sci. Eng. A A343, 314–318 (2006)

    Article  Google Scholar 

  19. S. Azuma, H. Miyuki, T. Udo, Effect of alloying nitrogen on crevice corrosion of austenitic stainless steels. ISIJ Int. 36(7), 793–798 (1996)

    Article  Google Scholar 

  20. F.M. Bayoumi, W.A. Ghanem, Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride soluions. Mater. Lett. 59, 3311–3314 (2005)

    Article  Google Scholar 

  21. K. Endo, Y. Abiko, M. Suzuki, H. Ohno, T. Kaku, Corrosion resistance and biocompatibility of high nitrogen-bearing stainless steels. Zairyo-toKankyo 47, 570–576 (1998)

    Article  Google Scholar 

  22. G. Lothongkum, P. Wongpaya, S. Morito, T. Furuhara, T. Maki, Effect of nitrogen on corrosion behavior of 28Cr-7Ni and microduplex stainless steels in air-saturated 3.5% NaCl solution. Corros. Sci. 48, 137–153 (2006)

    Article  Google Scholar 

  23. M. Sagara, Y. Katada, T. Kodama, Localized corrosion behavior of high nitrogen-bearing austenitic stainless steels in sea water. ISIJ Int. 43(5), 714–719 (2003)

    Article  Google Scholar 

  24. H. Yashiro, D. Hirayasu, N. Kumagai, Effect of nitrogen alloying on the pitting of type stainless steel. ISIJ Int. 42(12), 1477–1482 (2002)

    Article  Google Scholar 

  25. L. Nosey, S. Farina, M. Avalos, L. Nachez, B.J. Gomez, J. Feugeas, Corrosion behavior of ion nitrided AISI 316L stainless steel. Thin Solid Film 516, 1044–1050 (2008)

    Article  ADS  Google Scholar 

  26. A. Nikmah, D. Izak Rudyardjo, J. Ady, A. Taufiq, Studies on density, corrosion rate and hardness characteristics of stainless steel implanted by nitrogen ion. IOP Conf. Ser. Mater. Sci. Eng. 515, 012018 (2019)

    Article  Google Scholar 

  27. D.A. Schino, J.M. Kenny, Effect of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steel. J. Mater. Sci. Lett. 21, 1631–1634 (2002)

    Article  Google Scholar 

  28. C.T. Kwok, F.T. Cheng, H.C. Man, W.H. Ding, Corrosion characteristic of nanostructured layer on 316L Stainless steel fabricated by cavitation annealing. Mater. Lett. 60, 2419–2422 (2006)

    Article  Google Scholar 

  29. S. Suyitno, R. Dharmastiti, A. Suprihanto, J. Chem. Pharm. Res. 7(10), 1034–1038 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahyu Caesarendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suprihanto, A., Fitriyana, D.F., Armila, Caesarendra, W. (2020). An Application of High Temperature Gas Nitriding (HTGN) Method to Improve the Quality of Implant Materials 316L and 316LVM. In: Murakami, RI., Koinkar, P., Fujii, T., Kim, TG., Abdullah, H. (eds) NAC 2019. Springer Proceedings in Physics, vol 242. Springer, Singapore. https://doi.org/10.1007/978-981-15-2294-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2294-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2293-2

  • Online ISBN: 978-981-15-2294-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics