Skip to main content

Numerical Simulation of Nonlinear Ecological Models with Nonlocal and Nonsingular Fractional Derivative

  • Chapter
  • First Online:
Mathematical Modelling in Health, Social and Applied Sciences

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 603 Accesses

Abstract

In this work, we focus on both nonspatial and spatially extended predator–prey systems whose dynamics are described by the Holling type-IV functional responses. The classical time derivative in such models is replaced with the Atangana–Baleanu fractional derivative with nonlocal and nonsingular properties. A two-step scheme based on fractional Adams–Bashforth method is the formulation for the approximation of this derivative. We present a brief linear stability analysis for nondiffusive system and report Hopf and Turing bifurcation analysis for the spatial case. For different parameter values of \(\alpha \in (0,1]\), we obtain a range pattern results from numerical experiments. We also justify the difference between the integer and noninteger order results via numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.M. Abd-Elhameed, E.H. Doha, Y.H. Youssri, M.A. Bassuony , New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, in Numerical Methods for Partial Differential Equations (2016). https://doi.org/10.1002/num.22074

    Article  MathSciNet  Google Scholar 

  2. O. Abu Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos, Solitons and Fractals 117, 161–167 (2018)

    Article  MathSciNet  Google Scholar 

  3. O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals 117, 117–124 (2018)

    Article  MathSciNet  Google Scholar 

  4. O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos, Solitons Fractals 125, 163–170 (2019)

    Article  MathSciNet  Google Scholar 

  5. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular Kernel: theory and application to heat transfer model. Thermal Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  6. A. Atangana, Derivative with a New Parameter: Theory Methods and Applications (Academic Press, New York, 2016)

    Book  Google Scholar 

  7. A. Atangana, J.F. Goméz-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos, Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  Google Scholar 

  8. A. Atangana, Blind in a commutative world: simple illustrations with functions and chaotic attractors Chaos. Solitons Fractals 114, 347–363 (2018)

    Article  MathSciNet  Google Scholar 

  9. A. Atangana, K.M. Owolabi, New numerical approach for fractional differential equations. Math. Modell. Nat. Phenom., 13(3), 21 pages (2018). https://doi.org/10.1051/mmnp/2018010

    Article  MathSciNet  Google Scholar 

  10. A. Atangana, S. Jain, The role of power decay, exponential decay and Mittag-Leffler function’s waiting time distribution: application of cancer spread. Phys. A 512, 330–351 (2018)

    Article  MathSciNet  Google Scholar 

  11. M.A. Bassuony, W.M. Abd-Elhameed, E.H. Doha, Y.H. Youssri, A Legendre-Laguerre-Galerkin method for uniform Euler-Bernoulli beam equation. East Asian J. Appl. Math. 8, 280–295 (2018)

    Article  MathSciNet  Google Scholar 

  12. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fractional Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  13. M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fractional Differ. Appl. 2, 1–11 (2016)

    Article  Google Scholar 

  14. E.H. Doha, W.M. Abd-Elhameed, N.A. Elkot, Y.H. Youssri, Integral spectral Tchebyshev approach for solving space Riemann-Liouville and Riesz fractional advection-dispersion problems. Adv. Diff. Equ. (2017). https://doi.org/10.1186/s13662-017-1336-6

    Article  MathSciNet  MATH  Google Scholar 

  15. E.H. Doha, Y.H. Youssri, On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: applications on a semi-infinite domain. Nonlinear Eng. (2019). https://doi.org/10.1515/nleng-2018-0073

    Article  Google Scholar 

  16. E.H. Doha, R.M. Hafez, Y.H. Youssri, Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.03.011

    Article  MathSciNet  Google Scholar 

  17. E.H. Doha, W.M. Abd-Elhameed, Y.H. Youssri, Fully Legendre spectral Galerkin algorithm for solving linear one-dimensional telegraph type equation. Int. J. Comput. Methods (2019). https://doi.org/10.1142/S0219876218501189

    Article  MathSciNet  MATH  Google Scholar 

  18. J.F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A: Stat. Mech. Appl. 465(2017), 562–572 (2017)

    Article  MathSciNet  Google Scholar 

  19. B.E. Kendall, Cycles, chaos, and noise in predator-prey dynamics. Chaos Solitons Fractals 12, 321–332 (2001)

    Article  Google Scholar 

  20. J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2002)

    Book  Google Scholar 

  21. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, Berlin, 2003)

    Book  Google Scholar 

  22. K.M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)

    Article  MathSciNet  Google Scholar 

  23. K.M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense. Math. Modell. Nat. Phenom. 13, 7 (2018). https://doi.org/10.1051/mmnp/2018006

    Article  MathSciNet  MATH  Google Scholar 

  24. K.M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 133, 15 (2018). https://doi.org/10.1140/epjp/i2018-11863-9

  25. K.M. Owolabi, Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives. Chaos Solitons Fractals 115, 160–169 (2018)

    Article  MathSciNet  Google Scholar 

  26. K.M. Owolabi, Chaotic behaviour in system of noninteger-order ordinary differential equations. Chaos Solitons Fractals 000, 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  27. K.M. Owolabi, Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 115, 127–134 (2018)

    Article  MathSciNet  Google Scholar 

  28. K.M. Owolabi, Numerical patterns in system of integer and non-integer order derivatives. Chaos Solitons Fractals 115, 143–153 (2018)

    Article  MathSciNet  Google Scholar 

  29. K.M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense. Math. Modell. Nat. Phenom. 13(7), [17 pages] (2018). https://doi.org/10.1051/mmnp/2018006

    Article  MathSciNet  Google Scholar 

  30. P.Y.H. Pang, M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88, 135–157 (2004)

    Article  MathSciNet  Google Scholar 

  31. J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 114, 175–185 (2018)

    Article  MathSciNet  Google Scholar 

  32. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Y.H. Youssri, W.M. Abd-Elhameed, Numerical spectral legendre-Galerkin algorithm for solving time fractional telegraph equation. Rom. J. Phys. 63, 107 (2019)

    MATH  Google Scholar 

  34. L. Zhang, Z. Li, Spatial complexity of a predator-prey model with Holling-type response. Abstr. Appl. Anal., 2014, Article ID 675378, 15 pages (2014). https://doi.org/10.1155/2014/675378

    MathSciNet  Google Scholar 

  35. S. Zhang, D. Tan, L. Chen, Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations. Chaos Solitons Fractals 27, 980–990 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M. (2020). Numerical Simulation of Nonlinear Ecological Models with Nonlocal and Nonsingular Fractional Derivative. In: Dutta, H. (eds) Mathematical Modelling in Health, Social and Applied Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2286-4_10

Download citation

Publish with us

Policies and ethics