Skip to main content

Metamaterial-Inspired Planar Cells for Miniaturized Filtering Applications

  • Chapter
  • First Online:
  • 505 Accesses

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

With the rapid advancement in the using of next-generation wireless communication systems, the demand for high-throughput microwave planar filters with miniaturized size and high selectivity increased exponentially [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pendry JB, Holden AJ, Robbins DJ, Tewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084

    Article  Google Scholar 

  2. Gay-Balmazando P, Martin JF (2004) Electromagnetic resonance in individual and coupled split ring resonator. Microwave Opt Tech Lett 40:3–6

    Article  Google Scholar 

  3. Martin F, Bonache J, Falcone F, Sorolla M, Marques R (2003) Split ring resonator-based left-handed coplanar waveguide. Appl Phys Lett 83(22):4652–4654

    Article  CAS  Google Scholar 

  4. Martin F, Falcone F, Bonache J, Marques R, Sorolla M (2003) Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw Wirel Compon Lett 13(12):511–513

    Article  Google Scholar 

  5. Falcone F, Martin F, Bonache J, Marques R, Lopetegi T, Sorolla M (2004) Left handed coplanar waveguide band pass filters based on bi-layer split ring resonators. IEEE Microw Wirel Compon Lett 14(1):10–12

    Article  Google Scholar 

  6. García JG, Bonache J, Falcone F, Baena JD, Martín F, Gil I, Lopetegi T, Laso MAG, Marcotegui A, Marqués R, Sorolla M (2004) Stepped-impedance low pass filters with spurious passband suppression. Electron Lett 40:881–883

    Google Scholar 

  7. Ali A, Khan MA, Hu Z (2007) High selectivity lowpass filter using negative-epsilon metamaterial resonators. Electron Lett 43:528–530

    Google Scholar 

  8. Marqués R, Martín F, Sorolla M (2011) Metamaterials with negative parameters: theory, design and microwave applications. In: Wiley series in microwave and optical engineering, vol. 183. Wiley

    Google Scholar 

  9. Gil M, Bonache J, Martín F (2008) Metamaterial filters: a review. Metamaterials 2(4):186–197

    Article  Google Scholar 

  10. Garcia JG, Bonache J, Gil I, Martin F, Ahumada MCV, Martel J (2006) Miniaturized microstrip and CPW filters using coupled metamaterial resonators. IEEE Trans Microw Theory Techn 54(6):2628–2634

    Google Scholar 

  11. Gil I, Martín F, Bonache J, García-García J (2006) Tunable metamaterial transmission lines based on varactor loaded split rings resonators. IEEE Trans Microw Theory Tech 54(6):2665–2674

    Article  Google Scholar 

  12. Bonache J, Martín F, Falcone F, García J, Gil I, Lopetegi T, Laso MAG, Marqués R, Medina F, Sorolla M (2004) Super compact split ring resonators CPW band pass filters. In: Proceedings of the IEEE-MTT international microwave symposium digest, FortWorth, TX, USA, June 2004, pp 1483–1486

    Google Scholar 

  13. Mondal P, Mandal MK, Chaktabarty A, Sanyal S (2006) Compact bandpass filters with wide controllable fractional bandwidth. IEEE Microw Wirel Compon Lett 16:540–542

    Article  Google Scholar 

  14. Jiusheng L, Tieying D (2007) Application of metamaterial unit cell in bandpass filter. Microw Opt Technol Lett 49(9)

    Article  Google Scholar 

  15. Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J, Beruete M, Marques R, Martın F, Sorolla M (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93(19):197401

    Article  CAS  Google Scholar 

  16. Baena JD, Bonache J, Martin F, Sillero RM, Falcone F, Lopetegi T, Laso MAG, Garcia-Garcia J, Gil I, Portillo MF, Sorolla M (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Tech 53(4):1451–1461

    Article  Google Scholar 

  17. Rogla LJ, Carbonell J, Boria VE (2007) Study of equivalent circuits for open ring and split-ring resonators in coplanar waveguide technology. IET Microw Antennas Propag 1(1):170–176

    Article  Google Scholar 

  18. Aznar F, Bonache J, Martin F (2008) Improved circuit model for left-handed lines loaded with split ring resonators. Appl Phys Lett 92(4):043512

    Article  Google Scholar 

  19. CST Microwave Studio Suit, @ 2015 CST: Computer Simulation Technology, AG

    Google Scholar 

  20. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans Instrum Meas 19:377–382

    Article  Google Scholar 

  21. Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62:33–36

    Article  Google Scholar 

  22. Hong JSG, Lancaster MJ (2004) Microstrip filters for RF/ microwave applications. Wiley, New York

    Google Scholar 

  23. Pozar DM (2005) Microwave engineering. Wiley

    Google Scholar 

  24. Garcia-Garcia J, Bonache J et al (2006) Comparison of electromagnetic bandgap and split ring resonator microstrip line as stop band structures. Microw Opt Technol Lett 44(4)

    Article  Google Scholar 

  25. Saasi I, Talbi L, Hettak K (2016) Compact band pass filters based on linked hexagonal-omega resonators. Microw Opt Technol Lett 58(5)

    Google Scholar 

  26. Sahu S, Kishore Mishra R, Ranjan Poddar D (2011) Compact metamaterial microstrip low-pass filter. J Electromagn Anal Appl 3(10):399–405

    Article  Google Scholar 

  27. Gill I, Bonache J, Gracia-Gracia J, Falcone F, Martin F (2005) Metamaterials in microstrip technology for filter applications. IEEE Antenna Propag Soc Int Symp 2005:668–671

    Google Scholar 

  28. Saadoum MMI, Engheta N (1992) A reciprocal phase shifter using novel pseudochiral or Ω medium. Microw Opt Technol Lett 5:184–188

    Article  Google Scholar 

  29. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations. IEEE Press, New York, NY

    Book  Google Scholar 

  30. Bassirian Jahromi P, Rashed-Mohassel J (2015) Deformed omega resonator and its application to microwave filters. Micro Opt Technol Lett 57:1447–1451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A.K. (2020). Metamaterial-Inspired Planar Cells for Miniaturized Filtering Applications. In: Kumari, R., Choudhury, B. (eds) Multiscale Modelling of Advanced Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-2267-3_6

Download citation

Publish with us

Policies and ethics