Skip to main content

An Architecture for e-Health Recommender Systems Based on Similarity of Patients’ Symptoms

  • Chapter
  • First Online:

Part of the book series: Blockchain Technologies ((BT))

Abstract

Nowadays, data are generated both by users and other systems deriving new data from the previous ones for supporting decision making. The Electronic Health Records contains from structured data (e.g. hospital id, etc.), semi-structured data (e.g. a Health Level Seven-based records), to unstructured data (e.g. patient’s symptoms). The big challenge with health in smart cities is associated with the prevention, both the business and human health point of view. That is to say, avoid the propagation of certain diseases’ patterns is the best option no just for people, but also from the city’s health and the local economy. Thus, an architecture able to integrate into an Organizational Memory the medical data coming from heterogeneous repositories with the aim of gathering different kinds of symptoms is introduced. The query in the architecture is understood such as an unstructured text (i.e. symptoms) or an electronic health record. In this sense, the architecture is able to reach similar cases from the organizational memory based on a textual similarity analysis for limiting the search space. Next, using the International Classification of Diseases is possible to convert a case to a vector model representation in order to compute metric distances and get other cases order by a level of similarity. Each query answer contains a set of recommendations based on the frequency of diagnoses related to similar cases are given in order to share previous experiences. The processes point of view related to architecture is outlined. Finally, some conclusions and future works are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.who.int/classifications/icd/en/.

References

  1. Lee CH, Yoon H-J (2017) Medical big data: promise and challenges. Kidney Res Clin Pract 36(1):3–11

    Article  Google Scholar 

  2. Yin Y, Zeng Y, Chen X, Fan Y (2016) The internet of things in healthcare: an overview. J Ind Inf Integr 1:3–13

    Google Scholar 

  3. Mezghani E, Exposito E, Drira K, Da Silveira M, Pruski C (2015) A semantic big data platform for integrating heterogeneous wearable data in healthcare. J Med Syst 39(12):185

    Article  Google Scholar 

  4. Ivanović M, Budimac Z (2014) An overview of ontologies and data resources in medical domains. Expert Syst Appl 41(11):5158–5166

    Article  Google Scholar 

  5. Degoulet P, Luna D, de Quiros FGB (2017) Chapter 6—Clinical information systems. In: Marin H, Massad E, Gutierrez M, Rodrigues R, Sigulem D (eds) Global health informatics. Academic Press-Elsevier, London, UK, pp 129–151

    Chapter  Google Scholar 

  6. Watts NT (1989) Clinical decision analysis. Phys Ther 69(7):569–576

    Article  Google Scholar 

  7. Ricci F, Rokach L, Shapira B (eds) (2015) Recommender systems handbook, 2nd edn. Springer, Boston, US

    MATH  Google Scholar 

  8. Abujar S, Hasan M, Hossain SA (2019) Sentence similarity estimation for text summarization using deep learning. In Kulkarni A, Satapathy S, Kang T, Kashan A (eds) ICDECT 2017: proceedings of the 2nd international conference on data engineering and communication technology. Advances in intelligent systems and computing, vol 828. Springer Singapore

    Google Scholar 

  9. Patil H, Thakur RS (2018) Document clustering: a summarized survey. In: I. Management Association (ed) Information retrieval and management: concepts, methodologies, tools, and applications. IGI Global, Hershey, PA, pp 47–64

    Chapter  Google Scholar 

  10. Barón MJS (2017) Applying social analysis for construction of organizational memory of R&D centers from lessons learned. In: Proceedings of the 9th international conference on Information Management and Engineering, Barcelona, Spain, 9–11 Oct 2017, pp 217–220

    Google Scholar 

  11. Lee K, Kim Y, Joshi K (2017) Organizational memory and new product development performance: investigating the role of organizational ambidexterity. Technol Forecast Soc Change 120:117–129

    Article  Google Scholar 

  12. Lamy JB, Sekar B, Guezennec G, Bouaud J, Séroussi B (2019) Explainable artificial intelligence for breast cancer: a visual case-based reasoning approach. Artif Intell Med 94:42–53

    Article  Google Scholar 

  13. Munir K, Sheraz Anjum M (2018) The use of ontologies for effective knowledge modelling and information retrieval. Appl Comput Inf 14(2):116–126

    Google Scholar 

  14. Dessì D, Reforgiato Recupero D, Fenu G, Consoli S (2019) A recommender system of medical reports leveraging cognitive computing and frame semantics. In: Tsihrintzis G, Sotiropoulos D, Jain L (eds) Intelligent systems reference library, vol 149. Springer, Cham, pp 7–30

    Google Scholar 

  15. Kenter T, de Rijke M (2015) Short text similarity with word embeddings. In: Proceedings of the 24th ACM international on conference on Information and Knowledge Management—CIKM’15, Melbourne, Australia, 18–23 Oct 2015, pp 1411–1420

    Google Scholar 

  16. Kashyap A, Han L, Yus R, Sleeman J, Satyapanich T, Gandhi S, Finin T (2016) Robust semantic text similarity using LSA, machine learning, and linguistic resources. Lang Resour Eval 50(1):125–161

    Article  Google Scholar 

  17. Mrabet Y, Kilicoglu H, Demner-Fushman D (2017) “TextFlow: a text similarity measure based on continuous sequences. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long Papers), Vancouver, Canada, July 2017, pp 763–772

    Google Scholar 

  18. Yao L, Pan Z, Ning H (2019) Unlabeled short text similarity with LSTM encoder. IEEE Access 7:3430–3437

    Article  Google Scholar 

  19. Miotto R, Weng C (2015) Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inf Assoc 22(e1):e141–e150

    Article  Google Scholar 

  20. Gómez-Vallejo HJ, Uriel-Latorre B, Sande-Meijide M, Villamarín-Bello B, Pavón R, Fdez-Riverola F, Glez-Peña D (2016) A case-based reasoning system for aiding detection and classification of nosocomial infections. Decis Support Syst 84:104–116

    Article  Google Scholar 

  21. Su C-J, Huang S-F, Li Y (2018) Case based reasoning driven ontological intelligent health projection system. In: Proceedings of the 2nd international conference on Medical and Health Informatics—ICMHI’18, Tsukuba, Japan, June 2018, pp 185–194

    Google Scholar 

  22. Silva BN, Diyan M, Han K (2019) Big data analytics. Deep learning: convergence to big data analytics. SpringerBriefs in computer science. Springer, Singapore, pp 13–30

    Chapter  Google Scholar 

  23. Navarro G (2014) Spaces, trees, and colors. ACM Comput Surv 46(4):1–47

    Article  Google Scholar 

  24. Frittelli V, Diván MJ (2018) Clasificación de Modelos para Recuperación de Información. In: 6to. Congreso Nacional de Ingeniería Informática/Sistemas de Información (CoNaIISI 2018), Mar del Plata, Argentina, Nov 2018

    Google Scholar 

  25. Dominich S (2000) A unified mathematical definition of classical information retrieval. J Am Soc Inf Sci Technol 51(7):614–624

    Article  Google Scholar 

  26. Baeza-Yates R, Ribeiro-Neto B (2011) Modern information retrieval: the concepts and technology behind search. Choice Rev Online 48(12):6950

    Google Scholar 

  27. Tenopir C (2008) Online systems for information access and retrieval. Libr Trends 56(4):816–829

    Article  Google Scholar 

  28. Salton G, Fox EA, Wu H (1983) Extended boolean information retrieval. Commun ACM 26(11):1022–1036

    Article  MathSciNet  Google Scholar 

  29. Singh P, Dhawan S, Agarwal S, Thakur N (2015) Implementation of an efficient Fuzzy Logic based information retrieval system. ICST Trans Scalable Inf Syst 2(5):e5

    Article  Google Scholar 

  30. Wong SK, Ziarko W, Wong PCN (1985) Generalized vector space model in information retrieval. In: Proceedings of the 8th annual international ACM SIGIR conference on Research and Development in Information Retrieval, Montreal, Quebec, Canada, 5–7 June 1985, pp 18–25

    Google Scholar 

  31. Furnas G, Deerwester S, Dumais S, Landauer T, Harshman R, Streeter L, Lochbaum K (1988) Information retrieval using a singular value decomposition model of latent semantic structure. In: Proceedings of the 11th annual international ACM SIGIR conference on Research and Development in Information Retrieval, Grenoble, France, 1988, pp 465–480

    Google Scholar 

  32. Robertson SE, Jones KS (1976) Relevance weighting of search terms. J Am Soc Inf Sci 27(3):129–146

    Article  Google Scholar 

  33. Ribeiro BAN, Muntz R (1996) Belief network model for IR. In: SIGIR Forum (ACM Special Interest Group on Information Retrieval), pp 253–261

    Google Scholar 

  34. Turtle H, Croft WB (1989) Inference networks for document retrieval. In: Proceedings of the 13th annual international ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 1990, vol 51(2), pp 1–24

    Google Scholar 

  35. Robins D (2000) Interactive information retrieval: context and basic notions. Informing Sci 3(2):57–61

    Article  Google Scholar 

  36. Agichtein E, Brill E, Dumais S (2006) Improving web search ranking by incorporating user behavior information. In: Proceedings of the twenty-ninth annual international ACM SIGIR conference on Research and Development in Information Retrieval, vol 2006, Seattle, Washington, USA, Aug 2006, pp 19–26

    Google Scholar 

  37. Frittelli V, Steffolani F, Teicher R, Picco J (2012) Búsqueda por similaridad aplicada en la recuperación de factores que inciden en el cálculo del índice de riesgo para la salud de la vivienda urbana. In: Rojas M, Meichtry N, Vázquez J (eds) Monitoreo de la salud ambiental análisis y perspectivas desde salud colectiva vulnerabilidad social y sistemas computacionales asociados. Instituto de Investigaciones Geohistricas de la Provincia del Chaco, Resistencia, pp 114–126

    Google Scholar 

  38. Losada DE, Barreiro A (2001) A logical model for information retrieval based on propositional logic and belief revision. Comput J 44(5):410–424

    Article  Google Scholar 

  39. Lalmas M (1998) Logical models in information retrieval: introduction and overview. Inf Process Manag 34(1):19–33

    Article  Google Scholar 

  40. Chen G, Zhang P (2012) The content extraction method of webpage information based on knowledge base. In: Proceedings of the 2012 5th international joint conference on Computational Sciences and Optimization, Harbin, Heilongjiang, China, 23–26 June 2012, pp 623–626

    Google Scholar 

  41. Zhang R, Ding G, Zhang F, Meng J (2017) The information retrieval technology of dynamic feedback artificial intelligence based on the neural network. In: Proceedings—2016 international conference on Smart City and Systems Engineering, Zhanggjiajie, Hunan, China, 25–26 Nov 2016, pp 250–253

    Google Scholar 

  42. Drias H, Khennak I, Boukhedra A (2009) A hybrid genetic algorithm for large scale information retrieval. In: Proceedings—2009 IEEE international conference on Intelligent Computing and Intelligent Systems, ICIS 2009 (1), pp 842–846

    Google Scholar 

  43. Sameer VU, Balabantaray RC (2014) Improving ranking of webpages using user behaviour, a genetic algorithm approach. In: 1st International conference on Networks and Soft Computing, Guntu, Andhra Pradesh, India, 19–20 Aug 2014—Proceedings, pp 1–4

    Google Scholar 

  44. Thakare AD, Dhote CA (2014) New unification matching scheme for efficient information retrieval using genetic algorithm. In: Proceedings of the 2014 international conference on Advances in Computing, Communications and Informatics, Delhi, India, 24–27 Sept 2014, pp 1936–1941

    Google Scholar 

  45. Bravo M, Montes A, Reyes A (2008) Natural language processing techniques for the extraction of semantic information in web services. In: 7th Mexican international conference on Artificial Intelligence—Proceedings of the Special Session, Atizapán de Zaragoza, México, 27–31 Oct 2008, pp 53–57

    Google Scholar 

  46. Calvillo EA, Mendoza R, Muñoz J, Martínez JC, Vargas M, Rodriguez LC (2016) Automatic algorithm to classify and locate research papers using natural language. IEEE Lat Am Trans 14(3):1367–1371

    Article  Google Scholar 

  47. Ramli F, Noah SA, Kurniawan TB (2017) Ontology-based information retrieval for historical documents. In: 2016 3rd international conference on Information Retrieval and Knowledge Management, CAMP 2016—Conference Proceedings, Kuala Lumpur, Malaysia, 8–10 Aug 2016, pp 55–59

    Google Scholar 

  48. Jadhav PA, Chatur PN, Wagh KP (2016) Integrating performance of web search engine with machine learning approach. In: Proceeding of IEEE—2nd international conference on Advances in Electrical, Electronics, Information, Communication and Bioinformatics, IEEE—AEEICB 2016, Chennai, Tamil Nadu, India, 27–28 Feb 2016, pp 519–524

    Google Scholar 

  49. Chávez E, Navarro G, Baeza-Yates R, Marroquín JL (2001) Searching in metric spaces. ACM Comput Surv 33(3):273–321

    Article  Google Scholar 

  50. Amin S, Neumann G, Dunfield K, Vechkaeva A, Chapman KA, Wixted MK (2019) MLT-DFKI at CLEF eHealth 2019: multi-label classification of ICD-10 codes with BERT. In: Müller H, Cappellato L, Ferro N, Losada DE (ed) CEUR workshop proceedings, vol 2380. CEUR-WS

    Google Scholar 

  51. Muslim A, Mutiara AB, Suhendra A, Oswari T (2019) Expert mapping development system with disease searching sympthom based on ICD 10. In: 2018 Third international conference on informatics computing. IEEE, pp 1–4

    Google Scholar 

  52. Blanco A, Casillas A, Pérez A, Diaz de Ilarraza A (2019) Multi-label clinical document classification: impact of label-density. Expert Syst Appl 138:112835

    Article  Google Scholar 

  53. Atutxa A, de Ilarraza AD, Gojenola K, Oronoz M, Perez-de-Viñaspre O (2019) Interpretable deep learning to map diagnostic texts to ICD-10 codes. Int J Med Inform 129:49–59

    Article  Google Scholar 

  54. Idri A, Abnane I, Abran A (2015) Systematic mapping study of missing values techniques in software engineering data. In: 2015 IEEE/ACIS 16th international conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, Japan, 1–3 June 2015, pp 1–8

    Google Scholar 

  55. Kwak SK, Kim JH (2017) Statistical data preparation: management of missing values and outliers. Korean J Anesthesiol 70(4):407

    Article  Google Scholar 

  56. Baeza-Yates R, Cunto R, Manber U, Wu S (1994) Proximity matching using fixed-queries trees. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 807, LNCS. Springer Verlag, pp 198–212

    Google Scholar 

  57. Bozkaya T, Ozsoyoglu M (1997) Distance-based indexing for high-dimensional metric spaces. ACM SIGMOD Rec 26(2):357–368

    Article  Google Scholar 

  58. Burkhard WA, Keller RM (1973) Some approaches to best-match file searching. Commun ACM 16(4):230–236

    Article  Google Scholar 

  59. Micó ML, Oncina J, Vidal E (1994) A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recogn Lett 15(1):9–17

    Article  Google Scholar 

  60. Navarro G (2002) Searching in metric spaces by spatial approximation. VLDB J 11(1):28–46

    Article  Google Scholar 

  61. Yianilos P (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the fourth annual ACM-SIAM symposium on discrete algorithms, ACM, Austin, Texas, 25–27 Jan 1993, pp 311–321

    Google Scholar 

  62. Yianilos P (1999) Excluded middle vantage point forests for nearest neighbor search. In: DIMACS implementation challenge, ALENEX’99

    Google Scholar 

  63. Gupta A, Harrod M, Quinn M, Manojlovich M, Fowler K, Singh H, Saint S, Chopra V (2018) Mind the overlap: how system problems contribute to cognitive failure and diagnostic errors. Diagnosis 5(3):151–156

    Article  Google Scholar 

  64. Bluhmki T, Dobler D, Beyersmann J, Pauly M (2019) The wild bootstrap for multivariate Nelson-Aalen estimators. Lifetime Data Anal 25(1):97–127

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario José Diván .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frittelli, V., Diván, M.J. (2020). An Architecture for e-Health Recommender Systems Based on Similarity of Patients’ Symptoms. In: Singh, D., Rajput, N. (eds) Blockchain Technology for Smart Cities. Blockchain Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-2205-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2205-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2204-8

  • Online ISBN: 978-981-15-2205-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics