Skip to main content

Identification of Interfaces of Mixtures with Nonlinear Models

  • Conference paper
  • First Online:
Proceedings of the Global AI Congress 2019

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1112))

  • 609 Accesses

Abstract

The study attempts to identify the most appropriate unmixing model to detect endmember mixtures in a hyperspectral image scene. Least squares error-based linear spectral unmixing and gradient descent maximum entropy unmixing models have been used to identify linear mixtures in the datasets. Fuzzy C-Means-based unmixing algorithm extracts the interface of two major endmembers which is similar to the feature of the nonlinear spectral unmixing algorithms. Two popular bilinear models, Nascimento’s model and Fan’s model, have been studied. This study has been done on two hyperspectral datasets, i.e., homogeneous and heterogeneous. It is observed that the endmember interfaces detected by Fuzzy C-Means are more prominent in the dataset that has well-defined boundaries between endmembers, whereas Nascimento’s and Fan’s models show more accuracy in the dataset containing dense mixtures. The image derived fractional abundance values estimated by each model has been validated from ground abundance values after field visits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  2. Meer, F.V.D.: iterative spectral unmixing (ISU). Int. J. Remote Sens. 20(17), 3431–3436 (1999)

    Article  Google Scholar 

  3. Yuhas, R.H., Goetz, A.F.H., Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm. In: Green, R. O. (eds.) Proc. Summaries 3rd Annu. JPL Airborne Geoscience Workshop, vol. 1, pp. 147–149 (1992)

    Google Scholar 

  4. Cross, A.M., Settle, J.J., Drake, N.A., Paivinen, R.T.M.: Subpixel measurement of tropical forest cover using AVHRR data. Int. J. Remote Sens. 12(5), 1119–1129 (1991)

    Article  Google Scholar 

  5. Healcy, G., Slater, D.: Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Trans. Geosci. Remote Sens. 37(6), 2706–2717 (1999)

    Article  Google Scholar 

  6. Craig, M.D.: Minimum-volume transforms for remotely sensed data. IEEE Trans. Geosci. Remote Sens. 32(3), 542–552 (1994)

    Article  Google Scholar 

  7. Boardman, J.W., Kruse, F.A., Green, R.O.: Mapping target signatures via partial unmixing of AVIRIS data. In: Green, R. O. (eds.) Proc. Summaries 5th Annu. JPL Airborne Earth Science Workshop, vol. 1, pp. 23–26 (1995)

    Google Scholar 

  8. Winter, M.E.: N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Proc. SPIE Conf. Imaging Spectrometry V, pp. 266–275 (1999)

    Google Scholar 

  9. Nascimento, J.M.P., Dias, J.M.B.: Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  10. Settle, J.J.: On the relationship between spectral unmixing and subspace projection. IEEE Trans. Geosci. Remote Sens. 34(4), 1045–1046 (1996)

    Article  Google Scholar 

  11. Settle, J.J., Drake, N.A.: Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14(6), 1159–1177 (1993)

    Article  Google Scholar 

  12. Chang, C.I., Heinz, D.C.: Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 38(3), 1144–1159 (2000)

    Article  Google Scholar 

  13. Heinz, D.C., Chang, C.-I.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  14. Foody, G.M.: Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 17, 1317–1340 (1996)

    Article  Google Scholar 

  15. Bastin, L.: Comparison of Fuzzy C-Means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. Int. J. Remote Sens. 18(17), 3629–3648 (1997)

    Article  Google Scholar 

  16. Foody, G.M.: Thematic mapping from remotely sensed data with neural networks: MLP, RBF, and PNN based approaches. J. Geograph. Syst. 3, 217–232 (2001)

    Article  Google Scholar 

  17. Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P.: Automatic endmember extraction from hyperspectral data for mineral exploration. In: Proceedings of 21st Canadian Symposium on Remote Sensing, Ottawa, ON, Canada, vol. 2, pp. 891–896 (1999)

    Google Scholar 

  18. Bayliss, J., Gualtier, J.A., Cromp, R.: Analyzing hyperspectral data with independent component analysis. Proc. SPIE 3240, 133–143 (1997)

    Article  Google Scholar 

  19. Nascimento, J.M.P., Dias, J.M.B.: Does independent component analysis play a role in unmixing hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(1), 175–184 (2004)

    Article  Google Scholar 

  20. Liou, C.Y., Yang, K.O.: Unsupervised classification of remote sensing imagery with non-negative matrix factorization. In: International Conference on ONIP (2005)

    Google Scholar 

  21. Paura, V.P., Piper, J., Plemmons, R.J.: Non negative matrix factorization for spectral data analysis. Linear Algebr. Appl. (2005)

    Google Scholar 

  22. Chang, C.I.: Hyperspectral imaging: techniques for spectral detection and classification. Springer Science & Business Media, Berlin, Heidelberg (2003)

    Book  Google Scholar 

  23. Chen, J., Richard, C., Honeine, P.: Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model. IEEE Trans. Signal Process. 61(2), 480–492 (2013)

    Article  Google Scholar 

  24. Zanotta, D.C., Haertel, V., Shimabukuro, Y.E., Renno, C.D.: Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 52(5), 3005–3012 (2014)

    Article  Google Scholar 

  25. Dobigeon, N., Tits, L., Somers, B., Altmann, Y., Coppin, P.: A comparison of nonlinear mixing models for vegetated areas using simulated and real hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6), 1869–1878 (2014)

    Article  Google Scholar 

  26. Altmann, Y., Dobigeon, N., Tourneret, J.Y.: Bilinear models for nonlinear unmixing of hyperspectral images. In: Paper presented at the Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon (2011)

    Google Scholar 

  27. Altmann, Y., Halimi, A., Dobigeon, N., Tourneret, J.-Y.: Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery. In: Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing, Prague (2011)

    Google Scholar 

  28. Fan, W., Baoxin, H., Miller, J., Mingze, L.: Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated—forest hyperspectral data. Int. J. Remote Sens. 30(11), 2951–2962 (2009)

    Article  Google Scholar 

  29. Guilfoyle, K.J., Althouse, M.L., Chang, C.I.: A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks. IEEE Trans. Geosci. Remote Sens. 39(10), 2314–2318 (2001)

    Article  Google Scholar 

  30. Halimi, A., Altmann, Y., Dobigeon, N., Tourneret, J.-Y.: Nonlinear unmixing of hyperspectral images using a generalized bilinear model. IEEE Trans. Geosci. Remote Sens. 49(11), 4153–4162 (2011)

    Article  Google Scholar 

  31. Heylen, R., Parente, M., Gader, P.: A review of nonlinear hyperspectral unmixing methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6), 1844–1868 (2014)

    Article  Google Scholar 

  32. Ray, T.W., Murray, B.C.: Nonlinear spectral mixing in desert vegetation. Remote Sens. Environ. 55(1), 59–64 (1996)

    Article  Google Scholar 

  33. Nascimento, J.M.P., Bioucas-Dias, J.M.: Nonlinear mixture model for hyperspectral unmixing. In: Bruzzone, L., Notarnicola, C., Posa, F. (eds.) Proceedings of the SPIE Image and Signal Processing for Remote Sensing XV, vol. 7477, Berlin, Germany (2012)

    Google Scholar 

  34. Altmann, Y., Dobigeon, N., Tourneret, J.Y. Bermudez, J.C.M.: A robust test for nonlinear mixture detection in hyperspectral images. In: Proceedings of the IEEE International Conference Acoustic, Speech and Signal Processing, pp. 2149–2153. Vancouver, Canada, (2013)

    Google Scholar 

  35. Somers, B., Cools, K., Delalieux, S., Stuckens, J., Zande, D., Verstraeten, W., Coppin, P.: Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards. Remote Sens. Environ. 113, 1183–1193 (2009)

    Article  Google Scholar 

  36. Licciardi, G.A., Frate, F.D.: Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans. Geosci. Remote Sens. 49(11), 4163–4172 (2011)

    Article  Google Scholar 

  37. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  Google Scholar 

  38. Ping-Xiang, L., Wu, B., Zhang, L.: Abundance estimation from hyperspectral image based on probabilistic outputs of multi-class support vector machines. In: Paper presented at the IEEE International Geoscience and Remote Sensing Symposium, Seoul (2005)

    Google Scholar 

  39. Tang, Y., Krasser, S., Yuanchen, H., Yang, W., Alperovitch, D.: Support vector machines and random forests modeling for spam senders behavior analysis. In: Paper presented at the IEEE Global Telecommunications Conference, New Orleans (2008)

    Google Scholar 

  40. Cheng, B., Zhao, C., Wang, Y.: Algorithm to Unmixing Hyperspectral Images Based on APSO-GMM. Paper presented at the 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Signal Processing and Applications, Harbin (2010)

    Google Scholar 

  41. Hu, Y.H., Lee, H.B., Scarpace, F.L., Fort, J., Fish, S., Wilson, S., Werle, D.: Optimal linear spectral unmixing. IEEE Trans. Geosci. Remote Sens. 37(1), 639–644 (1999)

    Article  Google Scholar 

  42. Miao, L., Qi, H., Szu, H.: A Maximum entropy approach to unsupervised mixed-pixel decomposition. IEEE Trans. Image Process. 16(4), 1008–1021 (2007)

    Google Scholar 

  43. Liu, W., Wu, E.Y.: Comparison of non-linear mixture models: sub-pixel classification. Remote Sens. Environ. 94(2), 145–154 (2005)

    Article  Google Scholar 

  44. Fisher, P.F., Pathirana, S.: The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sens. Environ. 34(2), 121–132 (1990)

    Article  Google Scholar 

  45. http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

  46. Chakravortty, S., Sinha, D.: Development of higher-order model for nonlinear interactions in hyperspectral data of mangrove forests. Current Sci. 111(6), 1055 (2016)

    Google Scholar 

  47. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the Fuzzy C-Means clustering algorithm. J. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Science and Technology, Government of India, for providing necessary funds to the major research project “Development of Algorithms for Spectral Unmixing and Sub-Pixel Classification of Hyperspectral Image Data.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srirupa Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Chakravortty, S. (2020). Identification of Interfaces of Mixtures with Nonlinear Models. In: Mandal, J., Mukhopadhyay, S. (eds) Proceedings of the Global AI Congress 2019. Advances in Intelligent Systems and Computing, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-15-2188-1_19

Download citation

Publish with us

Policies and ethics