Skip to main content

Investigation of effectiveness of preloading method for existing foundation underpinning by centrifuge tests

  • Conference paper
  • First Online:
  • 5404 Accesses

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 62))

Abstract

A conceptual preloading method was proposed for reducing loads carried by exiting piles by means of transferring partial loads on existing piles to underpinning piles. For investigation of the effectiveness of preloading method, a model preloading apparatus used for centrifuge tests was developed and a series of tests was performed on an underpinned foundation. In the centrifuge test, a pre-load was firstly applied to the underpinning pile to verify the load transfer effect of the preloading apparatus. Then additional loads were applied to the foundation to evaluate the load sharing behaviour of existing and underpinning piles. The feasibility of the preloading apparatus based on the preloading concept was verified through the experimental results. Moreover, under additional loading, the preloading value affected the load sharing capacity of existing and underpinning piles. Therefore, in the design of underpinning considering preloading, a proper pre-load range which is less than both linear pull-out behaviours of existing foundations and linear compressive behaviour of underpinning piles was suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alawneh, A.S., Malkawi, A.I. and Al-Deeky, H. (1999). Tension tests on smooth and rough model piles in dry sand. Canadian Geotechnical Journal, Vol. 36, No. 7, pp. 746-753.

    Google Scholar 

  • Armour, T., Groneck, P., Keeley, J., and Sharma, S. (2000). Micropile Desgin and Construction Guidelines-Implementation Manual. FHWA-SA-97-070, Federal Highway Administration, Washington, DC.

    Google Scholar 

  • Bruce, D. (1988). Aspects of minipiling practice in the United States. J. Ground Eng. 21, No. 8, pp. 20-33.

    Google Scholar 

  • El Naggar, M.H. and Sakr, M. (2000). Evaluation of Axial Performance of Tapered Piles from Centrifuge Tests. Canadian Geotechnical Journal, Vol. 37, No. 6, pp. 1295-1308.

    Google Scholar 

  • EN, B.S. (2004). Eurocode 7: Geotechnical Design-Part 1: General Rules. British Standards: London, UK.

    Google Scholar 

  • Horikoshi, K., Matsumoto, T., Hashizume, Y., Watanabe, T., and Fukuyama, H. (2003). Performance of Piled Raft Foundations Subjected to Static Horizontal Loads. International Journal of Physical Modelling in Geotechnics, No. 2, pp. 37-50.

    Google Scholar 

  • Juran, I., Benslimane, A. and Hanna, S. (2001). Engineering Analysis of Dynamic Behaviour of Micropiles Systems. Transportation Research Record: Journal of the Transportation Research Board, Vol. 1772, pp. 91-106.

    Google Scholar 

  • Kulhaway, F.H., Kozera, D.W. and Withiam, J.L. (1979). Uplift testing of model drilled shafts in sand. Journal of Geotechnical and Geoenvironmental Engineering, 105. ASCE1403 Proceeding

    Google Scholar 

  • Kulhaway, F.H. (1985). Drained uplift capacity of drilled shafts. In Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, pp. 1549-1552.

    Google Scholar 

  • Kim, D.S., Kim, N.R., Choo, Y.W., and Cho, G.C. (2013). A Newly Developed State-of-the Art Geotechnical Centrifuge in Korea. KSCE Journal of Civil Engineering 17, No. 1, pp. 77-84.

    Google Scholar 

  • Lizzi, F. (1980). The use of root pattern piles in the underpinning of monuments and old buildings and in the consolidation of historic centres. J.L’Industria Costruzioni, 110, 25.

    Google Scholar 

  • Lutenegger, A.J. and Gerald A. M. (1994). Uplift capacity of small-diameter drilled shafts from in situ tests. Journal of Geotechnical Engineering, Vol. 120, No. 8, pp. 1362-1380.

    Google Scholar 

  • MOLIT (2013). Housing Act, Korea Ministry of Land, Infrastructure and Transport, pp.2.

    Google Scholar 

  • Mayerhof, G.G. (1976). Bearing Capacity and Settlement of Pile Foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 102, pp. 195-228.

    Google Scholar 

  • Jang and Han (2018). Analysis of the Shape Effect on the Axial Performance of a Waveform Micropile By Centrifuge Model Tests. Acta Geotechnica, Vol. 14, No. 2, pp. 505-518.

    Google Scholar 

  • Terzaghi, F.T. and Peck, R.B. (1967). Soil Mechanics in Engineering Practice. 2rd ed. John Wiley and Sons, New York.

    Google Scholar 

  • Wang, C.C., Han, J.T., Jang, Y.E., Ha, I.S. and Kim, S.J. (2018). Study on the Effectiveness of Preloading Method on Reinforcement of the Pile-Foundation by 3D FEM Analysis. Journal of the Korean Geotechnical Society, Vol. 34, No. 1, pp. 47-57.

    Google Scholar 

  • Wood, D.M. (2004). Geotechnical Modelling. 1st ed. CRC Pres, Boca Raton, FL.

    Google Scholar 

Download references

Acknowledge

This research was funded by (19RERP-B099826-05) from Residential Environment Research Program (RERP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Han, J., Jang, Y. (2020). Investigation of effectiveness of preloading method for existing foundation underpinning by centrifuge tests. In: Duc Long, P., Dung, N. (eds) Geotechnics for Sustainable Infrastructure Development. Lecture Notes in Civil Engineering, vol 62. Springer, Singapore. https://doi.org/10.1007/978-981-15-2184-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2184-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2183-6

  • Online ISBN: 978-981-15-2184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics