Skip to main content

Abstract

Abiotic stresses are major threats influencing crop growth and production globally. Abiotic stresses can cause several cellular dysfunctions, and some of them are beneficial and required for stress tolerance enhancement. Compatible solute accumulation is one of these changes, and among them proline (Pro) overproduction is a physiological response commonly found in plants exposed to various abiotic stresses. Pro overproduction has been proposed to correlate with stress resistance in many plants. Pro implication in stress tolerance mechanism is supported by the observations that exogenous supply and genetic manipulation of metabolic pathways associated with Pro biosynthesis have been beneficial in enhancing stress tolerance in many plant species under different stresses. Pro improves stress tolerance via acting as a stress-related signal influencing adaptive responses, osmotic adjustment mediator, and molecular chaperone to stabilize subcellular structures, scavenging reactive oxygen species (ROS), acting as a metal chelator, serving as a nitrogen/carbon source for cells under stress conditions and after stress relief, maintaining cytoplasmic pH and hence alleviating its acidosis, triggering gene expression, and buffering cellular redox potential. Pro actual role in conferring stress tolerance is, however, still a matter of debate because there are several inconsistencies among published data. Also, Pro biosynthesis is dependent on a high diversity of regulation mechanisms, and even several of them are still largely obscure, which might exacerbate these discrepancies. Furthermore, the broad natural variation in Pro overproduction and its true role in metabolism of plants under stress conditions necessitate further research for better understanding of the reported variations. Despite the Pro beneficial roles observed under stress conditions, we believe that the often proposed relationship between Pro production and stress resistance may not be universal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

DFR:

Drought freezing responsive gene

EC:

Electrical conductivity

GSA:

Glutamate semialdehyde

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

OAT:

Ornithine-δ-aminotransferase

P5C:

Pyrroline-5-carboxylate

P5CDH?:

P5C dehydrogenase

P5CR:

P5C-pyrroline-5-carboxylate reductase

P5CS:

P5C synthatase

PDH:

Proline dehydrogenase

PERKs:

Proline-rich extensin-like receptor kinases

Pro:

Proline

ProT:

Proline transporter

PRP:

Proline-rich proteins

ROS:

Reactive oxygen species

References

  • Abdel Latef AA, Mostofa MG, Rahman MM, Abdel-Farid IB, Tran LP (2019) Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul 38(3):966–979. https://doi.org/10.1007/s00344-018-9906-8

    Article  CAS  Google Scholar 

  • Aghaee A, Moradi F, Zare-Maivan H, Zarinkamar F, Pour Irandoost H, Sharifi P (2011) Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr J Biotech 10:7617–7621

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    CAS  PubMed  Google Scholar 

  • Ahmed M, Ul-Hassan F, Qadir G, Shaheen FA, Aslam MA (2017) Response of proline accumulation in bread wheat (Triticum aestivum L.) under rainfed conditions. J Agri Meteorol 73:147–155

    Google Scholar 

  • Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia Novo F (2001) Comparison of proline accumulation in two Mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183

    CAS  Google Scholar 

  • Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S (2018) Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma 255:1349–1362

    CAS  PubMed  Google Scholar 

  • Ali Q, Ashraf M, Athar HUR (2007) Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  • Ali MK, Azhar A, Rehman H, Galani S (2016) Antioxidant defence system and oxidative damages in rice seedlings under heat stress. Pure Appl Biol 5:1131–1141

    CAS  Google Scholar 

  • Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Breed 3:44–55

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Aslam M, Saeed MS, Sattar S, Sajad S, Sajjad M, Adnan M, Iqbal M, Sharif MT (2017) Specific role of proline against heavy metals toxicity in plants. Int J Pure Appl Biosci 5:27–34

    Google Scholar 

  • Aslamarz AA, Vahdati K, Hassani D, Rahemi M, Mohammadi N, Leslie C (2011) Cold hardiness and its relationship with proline content in Persian walnut. Eur J Hortic Sci 76:84–90

    CAS  Google Scholar 

  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y (2009) Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signaling, required for abscisic acid responses in Arabidopsis. Plant J 60:314–327

    CAS  PubMed  Google Scholar 

  • Bassi R, Sharma SS (1993) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33:1339–1342

    CAS  Google Scholar 

  • Bekka S, Abrous-Belbachir O, Djebbar R (2018) Effects of exogenous proline on the physiological characteristics of Triticum aestivum L. and Lens culinaris Medik. under drought stress. Acta Agri Sloven 111:477–491

    Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy B, Boukhriss M, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agri Food Chem 58:4216–4222

    CAS  Google Scholar 

  • Benitez LC, Vighi IL, Auler PA, do Amaral MN, Moraes GP, Rodrigues GDS, Maia LC, Junior AMM, Braga EJB (2016) Correlation of proline content and gene expression involved in the metabolism of this amino acid under abiotic stress. Acta Physiol Plant 38:267. https://doi.org/10.1007/s11738-016-2291-7

    Article  CAS  Google Scholar 

  • Bertazzini M, Sacchi GA, Forlani G (2018) A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots. J Plant Physiol 226:145–153

    CAS  PubMed  Google Scholar 

  • Borgo L, Marur CJ, Vieira LGE (2015) Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Sci 37:191–199

    CAS  Google Scholar 

  • Borowski E, Michaáek S (2014) The effect of chilling temperature on germination and early growth of domestic and Canadian soybean (glycine max (L.) merr.) cultivars. Acta Sci Pol 13:31–43

    Google Scholar 

  • Bres W, Bandurska H, Kupska A, Niedziela J, Fraszczak B (2016) Responses of pelargonium (Pelargonium × hortorum L.H. Bailey) to long-term salinity stress induced by treatment with different NaCl doses. Acta Physiol Plant 38:26. https://doi.org/10.1007/s11738-015-2048-8

    Article  CAS  Google Scholar 

  • Çelik O, Atak Ç (2012) The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk J Biol 36:339–356

    Google Scholar 

  • Çelik O, Ünsal SG (2013) Expression analysis of proline metabolism-related genes in salt-tolerant soybean mutant plants. Plant Omics J 6:364–370

    Google Scholar 

  • Çelik O, Çakır BC, Atak Ç (2019) Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. Physiol Mol Biol Plants 25:85–99

    PubMed  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Towmey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    CAS  PubMed  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469

    CAS  PubMed  Google Scholar 

  • Covarrubias AA, Ayala JW, Reyes JL, Hernandez M, Garciarrubio A (1995) Cell-wall proteins induced by water deficit in bean (Phaseolus vulgaris L.) seedlings. Plant Physiol 107:1119–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    CAS  PubMed  Google Scholar 

  • Dai W, Wang M, Gong X, Liu J (2018) The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytol 219:972–989

    CAS  PubMed  Google Scholar 

  • Dawood MG, Taie HAA, Nassar RMA, Abdelhamid MT, Schimidhalter U (2014) The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South Afr J Bot 93:54–63

    CAS  Google Scholar 

  • Dbira S, Al Hassan M, Gramazio P, Ferchichi A, Vicente O, Prohens J, Boscaiu M (2018) Variable levels of tolerance to water stress (drought) and associated biochemical markers in Tunisian barley landraces. Molecules 23:613. https://doi.org/10.3390/molecules23030613

    Article  CAS  PubMed Central  Google Scholar 

  • de Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, Filho JCB, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Google Scholar 

  • de Freitas PAF, Miranda RS, Marques EC, Prisco JT, Gomes-Filho E (2018) Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J Plant Growth Regul 37:911–924

    Google Scholar 

  • De Ronde JA, Cress WA, Kruger GH, Strasser RJ, van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    PubMed  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Ding X, Jiang Y, Hao T, Jin H, Zhang H, He L, Zhou Q, Huang D, Hui D, Yu J (2016) Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.). PLoS One 11:e0152429. https://doi.org/10.1371/journal.pone.0152429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dionisio-Sese ML, Shono M, Tobita S (1999) Effects of proline and betaine on heat inactivation of ribbulose-1,5-bisphosphate carboxylase/oxygenase in crude extracts of rice seedlings. Photosynthetica 36:557–563

    CAS  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    CAS  PubMed  Google Scholar 

  • Ershadi A, Karimi R, Mahdei KN (2016) Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiol Plant 38:2. https://doi.org/10.1007/s11738-015-2021-6

    Article  CAS  Google Scholar 

  • Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P (2019) Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol 45:1096–1109

    Google Scholar 

  • Fu Y, Ma H, Chen S, Gu T, Gong J (2018) Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot 69:579–588

    CAS  PubMed  Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for ∆1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furtana GB, Duman H, Tipirdamaz R (2013) Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turk J Bot 37:455–463

    CAS  Google Scholar 

  • Gaafar RM, Seyam MM (2018) Ascorbate-glutathione cycle confers salt tolerance in Egyptian lentil cultivars. Physiol Mol Biol Plants 24:1083–1092

    PubMed  PubMed Central  Google Scholar 

  • Gavelienė V, Pakalniškytė L, Novickienė L (2014) Regulation of proline and ethylene levels in rape seedlings for freezing tolerance. Cent Eur J Biol 9:1099–1107

    Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Cheema M, Razmjoo J (2019) Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol Plant 41:23

    Google Scholar 

  • Gleeson D, Lelu-Walter M, Parkinson M (2004) Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaea Dengler), sitka spruce (Picea sitchensis (Bong.) Carr.) and oak (Quercus robur L.) subjected to cold and salt stress. Ann For Sci 61:125–128

    CAS  Google Scholar 

  • Gosavi GU, Jadhav AS, Kale AA, Gadaskh SR, Pawar BD, Chimote VP (2014) Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor L.) at seedling stage. Indian J Biotechnol 13:356–363

    CAS  Google Scholar 

  • Guan C, Huang Y, Cui X, Liu S, Zhou Y, Zhang Y (2018) Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.). Plant Cell Rep 37:1187–1199

    CAS  PubMed  Google Scholar 

  • Gulen H, Kesici M, Cetinkaya C, Ergin S (2018) Proline and antioxidant enzyme activities in some strawberry cultivars under drought and recovery. Not Bot Horti Agrobo 46:570–578

    CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Akhani H, Poschenrieder C (2018) Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. J Plant Res 131:1029–1046

    CAS  PubMed  Google Scholar 

  • Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotech 5:149–153

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Harsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S (2016) Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann Agri Sci 61:57–64

    Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Google Scholar 

  • Heyser JW, Bruin D, Kincaid ML, Johnson RY, Rodriguez MM, Robinson NJ (1989) Inhibition of NaCl-induced proline biosynthesis by exogenous proline in halophilic Distichlis spicata suspension cultures. J Exp Bot 40:225–232

    CAS  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    CAS  Google Scholar 

  • Hmidi D, Abdelly C, Athar H, Ashraf M, Messedi D (2018) Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24:1017–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    CAS  PubMed  Google Scholar 

  • Hossein A, Parvane T (2013) Study the effect of cold treatments on some physiological parameters of 3 cold resistance almond cultivars. Life Sci J 10:4–16

    Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e62085. https://doi.org/10.1371/journal.pone.0062085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Ashraf MA, Rasheed R, Iqbal M, Ibrahim M, Ashraf S (2016) Heat shock increases oxidative stress to modulate growth and physico-chemical attributes in diverse maize cultivars. Int Agrophys 30:519–553

    CAS  Google Scholar 

  • Idrees M, Masroor M, Khan A, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Interact 5:293–303

    CAS  Google Scholar 

  • Jain MJ, Mathur GM, Koul SK, Sarin NS (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut Arachis hypogaea L. Plant Cell Rep 20:463–468

    CAS  Google Scholar 

  • Javadian N, Karimzadeh G, Mahfoozi S, Ghanati F (2010) Cold-induced changes of enzymes, proline, carbohydrates, and chlorophyll in wheat. Russ J Plant Physiol 57:540–547

    CAS  Google Scholar 

  • Jonytienė V, Burbulis N, Kuprienė R, Blinstrubienė A (2012) Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. J Food Agri Environ 10:327–330

    Google Scholar 

  • Kahlaoui B, Hachicha M, Misle E, Fidalgo F, Teixeira J (2018) Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J Saudi Soc Agri Sci 17:17–23

    Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59:609–619

    CAS  Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17:203–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SU, Din JU, Qayyum A, Jan NE, Jenks MA (2015) Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotypes. Acta Bot Croat 74:109–121

    Google Scholar 

  • Khavari-Nejada RA, Band RS, Najafi F, Nabiuni M, Gharari Z (2013) The role of Pro-P5C cycle in chs mutants of Arabidopsis under cold stress. Russ J Plant Physiol 60:375–382

    Google Scholar 

  • Khedr AHA, Abbas MA, Abdel Wahid AA (2003) Proline induces the expression of salt stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    CAS  PubMed  Google Scholar 

  • Kim J, Liu Y, Zhang X, Zhao B, Childs KL (2016) Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiol Biochem 105:203–212

    CAS  PubMed  Google Scholar 

  • Kishor PK, Hong Z, Miao GH, Hu CAA, Verma DS (1995) Overexpression of delta1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor PB, Kumari PH, Sunita MSL, Sreenivasulu N (2015) Role or proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544. https://doi.org/10.3389/fpls.2015.00544

    Article  Google Scholar 

  • KOÇ E, Đşlek C, Üstün AS (2010) Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. GU J Sci 23:1–6

    Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilagyi V, Simon-Sarkadi L, Galiba G (2005) Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant 124:227–235

    CAS  Google Scholar 

  • Kumar V, Shriram V, Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotech Rep 4:37–48

    Google Scholar 

  • Kumar RR, Goswami S, Sharma SK, Singh K, Gadpayle KA, Kumar N, Rai GK, Singh M, Rai RD (2012) Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J Plant Physiol Biochem 4:83–91

    CAS  Google Scholar 

  • Kusvuran S, Ellialtioglu S, Polat Z (2013) Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Hort Environ Biotechnol 54:319–325

    CAS  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962

    CAS  PubMed  Google Scholar 

  • Li C, Han L (2012) Enhanced drought tolerance of tobacco overexpressing OjERF gene is associated with alteration in proline and antioxidant metabolism. J Am Soc Hortic Sci 137:107–113

    CAS  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    CAS  PubMed  Google Scholar 

  • Liang X, Zhang L, Natarajan SQ, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J 2013:658793

    Google Scholar 

  • Liu S, Hao H, Lu X, Zhao X, Wang Y, Zhang Y, Xie Z, Wang R (2017) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep 7:10795. https://doi.org/10.1038/s41598-017-11308-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv W, Lin B, Zhang M, Hua X (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    CAS  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017a) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017b) Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Phyaiol Plant 39:56

    Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plant. Environ Exp Bot 52:113–122

    CAS  Google Scholar 

  • Mansour MMF, Stadelmann EJ (1994) NaCl-induced changes in protoplasmic characteristics of Hordeum vulgare cultivars differing in salt tolerance. Physiol Plant 91:389–394

    CAS  Google Scholar 

  • Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ (1993) Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress. A comparison of salt resistant and salt sensitive lines and cultivars. J Plant Physiol 142:623–628

    CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451

    Google Scholar 

  • Mari AH, Rajpar I, Hassan Z, Tunio S, Ahmad S (2018) Ions accumulation, proline content and juice quality of sugar beet genotypes as affected by water salinity. J Anim Plant Sci 28:1405–1412

    CAS  Google Scholar 

  • Medeiros MJL, Silva MMA, Granja MMC, Júnior GDE, Camara T, Willadino L (2015) Effect of exogenous proline in two sugarcane genotypes grown in vitro under salt stress. Acta Biol Colomb 20:57–63

    Google Scholar 

  • Mei Y, Qiu D, Xiao S, Chen D (2018) Evaluation of high temperature tolerance and physiological responses of different Anoectochilus germplasm resources. Appl Ecol Environ Res 16:7017–7031

    Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min K, Showman L, Perera A, Arora R (2018) Salicylic acid-induced freezing tolerance in spinach (Spinacia oleracea L.) leaves explored through metabolite profiling. Environ Exp Bot 156:214–227

    CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Molinari HC, Marur CJ, Filho JB, Kobayashi AK, Pileggi M, Júnior RL, Vieira LE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho JFRP (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    CAS  Google Scholar 

  • Nagesh RB, Devaraj VR (2008) High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust J Crop Sci 2:40–48

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 37–51

    Google Scholar 

  • Nanjo T, Kobayashia M, Yoshia Y, Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    CAS  PubMed  Google Scholar 

  • Nounjan N, Naghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    CAS  PubMed  Google Scholar 

  • Nounjan N, Chansongkrow P, Charoensawan V, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P (2018) High performance of photosynthesis and osmotic adjustment are associated with salt tolerance in rice carrying drought tolerance QTL: physiological and co-expression network analysis. Front Plant Sci 9:1135. https://doi.org/10.3389/fpls.2018.01135

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman HS (2015) Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agri Sci 60:389–402

    Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    CAS  PubMed  Google Scholar 

  • Pecta E, Terbea M (1995) Proline content and the conductivity test as screening methods for frost tolerance of winter wheat. Bulg J Plant Physiol 21:3–11

    Google Scholar 

  • Perveen S, Iqbal N, Saeed M, Zafar S, Arshad Z (2018) Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid DTC) under salt stress. Braz J Bot 41:805–815

    Google Scholar 

  • Phang JM, Liu W, Hancock C, Christian KJ (2012) The proline regulatory axis and cancer. Front Oncol 2:60. https://doi.org/10.3389/fpls.2018.01135

    Article  PubMed  PubMed Central  Google Scholar 

  • Posmyk MM, Janas KM (2007) Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant 29:509–517

    CAS  Google Scholar 

  • Pospisilova J, Haisel D, Vankova R (2011) Responses of transgenic tobacco plants with increased proline content to drought and/or heat stress. Am J Plant Sci 2:318–324

    CAS  Google Scholar 

  • Rady MM, Taha RS, Mahdi AHA (2016) Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under saline stress. South Afr J Bot 102:221–227

    CAS  Google Scholar 

  • Rady MM, Kuşvuran A, Alharby HF, Alzahrani Y, Kuşvuran S (2019) Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J Plant Growth Regul 38:449. https://doi.org/10.1007/s00344-018-9860-5

    Article  CAS  Google Scholar 

  • Rasheed R, Wahid A, Ashraf M, Basra SMA (2010) Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. Int J Agri Biol 12:1–8

    CAS  Google Scholar 

  • Ren Y, Miao M, Meng Y, Cao J, Fan T, Yue J, Xiao F, Liu Y, Cao S (2018) DFR1-mediated inhibition of proline degradation pathway regulates drought and freezing tolerance in Arabidopsis. Cell Rep 23:3960–3974

    CAS  PubMed  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    CAS  Google Scholar 

  • Roy D, Basu N, Bhunia A, Banerjee S (1993) Counteraction of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. Biol Plant 35:69–72

    CAS  Google Scholar 

  • Roy D, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    CAS  Google Scholar 

  • Saghfi S, Eivazi AR (2014) Effects of cold stress on proline and soluble carbohydrates in two chickpea cultivars. Int J Curr Microbiol Appl Sci 3:591–595

    Google Scholar 

  • Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Salama KH, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:170

    Google Scholar 

  • Sánchez-Reinoso AD, Garcés-Varón G, Restrepo-Díaz H (2014) Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean J Agri Res 74:373–379

    Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    CAS  Google Scholar 

  • Sayyari M, Ghanbari F, Fatahi S, Bavandpour F (2013) Chilling tolerance improving of watermelon seedling by salicylic acid seed and foliar application. Notul Sci Biol 5:67–73

    CAS  Google Scholar 

  • Shahba Z, Baghizadeh A, Vakili SMA, Yazdanpanah A, Yousefi M (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J Biophys Struct Biol 2:35–41

    CAS  Google Scholar 

  • Shahbaz M, Mushtaq Z, Andaz F, Masood A (2013) Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)? Sci Hortic 164:507–511

    CAS  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Oh S, Arora R, Kim D (2016) Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: a response associated with growth resumption or heat stress? Can J Plant Sci 96:630–638

    CAS  Google Scholar 

  • Signorelli S (2016) The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front Plant Sci 7:1339. https://doi.org/10.3389/fpls.2016.01339

    Article  PubMed  PubMed Central  Google Scholar 

  • Signorelli S, Coitiño EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between ·OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B 118:37–47

    CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Cumbes OJ (1989) Hydroxyl radical scavenging activity compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Song SQ, Lei YB, Tian XR (2005) Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russ J Plant Physiol 52:793–800

    CAS  Google Scholar 

  • Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer (India), New Delhi, pp 1–12

    Google Scholar 

  • Surekha CH, Nirmala K, Aruna LV, Suneetha G, Arundhati A, Kavi Kishor PB (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cult 116:27–35

    CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Székely G, Ábrahám E, Cséplo A, Rigo G, Zsigmond L, Csiszár J (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    PubMed  Google Scholar 

  • Tatar O, Ozalkan C, Atasoy GD (2013) Partitioning of dry matter, proline accumulation, chlorophyll content and antioxidant activity of chickpea (Cicer arietinum L.) plants under chilling stress. Bulg J Agri Sci 19:260–265

    Google Scholar 

  • Tavakoli M, Poustini K, Alizadeh H (2016) Proline accumulation and related genes in wheat leaves under salinity stress. J Agri Sci Tech 18:707–716

    Google Scholar 

  • Teh C, Shaharuddin NA, Ho C, Mahmood M (2016) Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol Plant 38:151. https://doi.org/10.1007/s11738-016-2163-1

    Article  CAS  Google Scholar 

  • Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torre-González A, Montesinos-pereira D, Blasco B, Ruiz JM (2018) Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. J Plant Physiol 231:329–336

    PubMed  Google Scholar 

  • Tuteja N, Gill SS, Tuteja R (2011) Plant responses to abiotic stresses: shedding light on salt, drought, cold and heavy metal stress. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science, Sharjah, UAE, pp 39–64

    Google Scholar 

  • Ueda A, Shi WM, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    CAS  PubMed  Google Scholar 

  • Ueda A, Shi W, Shimada T, Miyake H, Takabe T (2008) Altered expression of barley y-transporter causes different growth responses in Arabidopsis. Planta 227:277–286

    CAS  PubMed  Google Scholar 

  • Vera-Hernández P, Ramírez MA, Núñez MM, Ruiz-Rivas M, Rosas-Cárdenas FF (2018) Proline as a probable biomarker of cold stress tolerance in sorghum (Sorghum bicolor). Mexic J Biotech 3:77–86

    Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140. https://doi.org/10.1199/tab.0140

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente O, Al Hassan M, Boscaiu M (2016) Contribution of osmolyte accumulation to abiotic stress tolerance in wild plants adapted to different stressful environments. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer (India), New Delhi, pp 13–25

    Google Scholar 

  • Wan Y, Zhang Y, Zhang L, Zhou Z, Li X, Shi Q, Wang X, Bai J (2015) Caffeic acid protects cucumber against chilling stress by regulating antioxidant enzyme activity and proline and soluble sugar contents. Acta Physiol Plant 37:1706

    Google Scholar 

  • Wang S, Sun X, Hoshino Y, Yu Y, Jia B, Sun Z, Sun M, Duan X, Zhu Y (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 9:e91357. https://doi.org/10.1371/journal.pone.0091357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tang X, Wang H, Shao H (2015) Proline accumulation and metabolism-related genes expression profiles in Kostelezkya virginica seedlings under salt stress. Front Plant Sci 6:792. https://doi.org/10.3389/fpls.2015.00792

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X (2017) Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci 8:2182. https://doi.org/10.3389/fpls.2017.02182

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci 95:7799–7804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadegari LZ, Heidari R, Carapetian J (2007) The influence of cold acclimation on proline, malondialdehyde (MDA), total protein and pigments contents in soybean (Glycine max) seedlings. J Biol Sci 7:1436–1441

    CAS  Google Scholar 

  • Yamada M, Morishia H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Yoshida Y (2005) Effect of free proline accumulation in petunias drought stress. J Exp Bot 56:1975–1981

    CAS  PubMed  Google Scholar 

  • Yamada N, Sakakibara S, Tsutsumi K, Waditee R, Tanaka Y, Takabe T (2011) Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. J Plant Physiol 168:1609–1616

    CAS  PubMed  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    CAS  PubMed  Google Scholar 

  • Yang SL, Lan SS, Deng F, Gong M (2016) Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L. J Plant Growth Regul 35:815–826

    Google Scholar 

  • Yelenosky G (1979) Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Plant Physiol 64:425–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaratti M, Forlani G (2017) Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions. Front Plant Sci 8:927. https://doi.org/10.3389/fpls.2017.00927

    Article  Google Scholar 

  • Zarei S, Ehsanpour AA, Abbaspour J (2012) The role of overexpression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. J Cell Mol Res 4:43–49

    Google Scholar 

  • Zhang L, Becker DF (2015) Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci 6:552. https://doi.org/10.3389/fpls.2015.00552

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lin S, Li F, Meng D, Sheng J (2013) Amelioration of chilling stress by arginine in tomato fruits: changes in endogenous arginine catabolism. Postharvs Biol Tech 76:106–111

    CAS  Google Scholar 

  • Zhang X, Tang W, Liu J, Liu Y (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol 20:717–722

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansour, M.M.F., Salama, K.H.A. (2020). Proline and Abiotic Stresses: Responses and Adaptation. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_12

Download citation

Publish with us

Policies and ethics