Skip to main content

Ecophysiology and Stress Responses of Aquatic Macrophytes Under Metal/Metalloid Toxicity

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I

Abstract

Many metal elements are essential for plant growth at low concentrations but their excessive levels in the rhizosphere may cause phytotoxicity depending upon the fact that metals are easily absorbed and translocated in soil–plant systems. Nonessential metals/metalloids, i.e., Pb, Cr, Cd, As, Hg, etc., initiate a series of consecutive and/or parallel events at morphological, physiological, and molecular levels in aquatic plants depending on the nature of element and plant species. This chapter emphasizes the responses of aquatic macrophytes to metals/metalloids, with possible implementation in phytoremediation techniques. Metal-triggered growth inhibition, alterations in enzyme activities, inhibition of photosynthesis, changes in nutrient acquisition and metabolism, and the formation of free radicals are the major components reviewed in this book chapter. Discussion about the metal toxicity avoidance strategies like fluctuations in rhizospheric environments, plasma membrane exclusion, cell wall immobilization, phytochelatin-based sequestration and compartmentalization processes, stress proteins, and metallothioneins is also within the scope of this chapter. Metal tolerance in aquatic plants is more likely involved in an integrated network of multiple response processes generally described as “fan-shaped response” rather than several isolated functions described above. Plant tolerance to metals/metalloids is mainly determined from its transport across plasma membrane and tonoplast in plant. The appropriate understanding of metal-triggered ecophysiological responses of aquatic plants may make it promising to use them for treatment of metal polluted waters and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for arsenic TP-92/09. Center for Disease Control, Atlanta, GA

    Google Scholar 

  • Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. In: Soil heavy metals. Springer, Berlin, pp 19–29

    Chapter  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  CAS  PubMed  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Innov Eng Res Manag 5(3):56–66

    Google Scholar 

  • Ashfaque F, Inam A, Sahay S, Iqbal S (2016) Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation—a promising technology. Int J Agric Ecol Res Int 6:1–19

    Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2005) Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  • Blossfeld S, Perriguey P, Sterckeman T, Morel J, Losch R (2010) Rhizosphere pH dynamics in trace-metal-contaminated soils monitored with planar pH optodes. Plant and Soil 330:173–184

    Article  CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130

    Article  CAS  PubMed  Google Scholar 

  • Bonanno G, Giudice RL (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10(3):639–645

    Article  CAS  Google Scholar 

  • Calba H, Cazevieille PC, Poss R, Jaillard B (2004) The dynamics of protons, aluminium and calcium in the rhizosphere of maize cultivated in tropical acid soils, experimental study and modelling. Plant and Soil 260:33–46

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  PubMed  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15(3):375–382

    CAS  Google Scholar 

  • Centeno JA, Tchounwou PB, Patlolla AK, Mullick FG, Murakat L, Meza E, Gibb H, Long Fellow D, Yedjou CG (2005) Environmental pathology and health effects of arsenic poisoning a critical review. In: Naidu R, Smith E, Smith J, Bhattacharya P (eds) Managing arsenic in the environment from soil to human health. CSIRO, Adelaide

    Google Scholar 

  • Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil. Plant and Soil 243:635–639

    Article  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead contaminated soils. Biotechnology 5(1):1–4

    Article  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondi S, Kanwar M (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140(3):280–296

    CAS  PubMed  Google Scholar 

  • Dhir B, Sharmila P, Saradhi P (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:1–28

    Article  CAS  Google Scholar 

  • Dhir B, Nasim SA, Samantary S, Srivastava S (2012) Assessment of osmolyte accumulation in heavy metal exposed Salvinia natans. Int J Bot 8:153–158

    Article  CAS  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte BN, Silva V, Cac-ador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species andante oxidants in higher plants. CRC, Boca Raton, FL, pp 177–203

    Google Scholar 

  • Duman F, Cicek M, Sezen G (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As (V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engwa GA (2018) Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In: Phytochemicals-source of antioxidants and role in disease prevention. IntechOpen, Rijeka

    Google Scholar 

  • Erakhrumen AA (2007) State of forestry research and education in Nigeria and sub-saharan Africa: implications for sustained capacity building and renewable natural resources development. J Sustain Dev 9(4):133–151

    Google Scholar 

  • Erdei L, Mezosi G, Mecs I, Vass I, Foglein Fand Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. Acta Biol 49(1–2):75–76

    Google Scholar 

  • Figueira E, Freitas R, Guasch H, Almeida SP (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea(Kutzing) W. Smith. Ecotoxicology 2(3):285–292

    Article  CAS  Google Scholar 

  • Gajewska E, Wielanek M, Bergier K, Skłodowska M (2009) Nickel-induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 3(1):1291–1300

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  • Georgiadou EC, Kowalska E, Patla K, Kulbat K, Smolinska B, Leszczynska J, Fotopoulos V (2018) Influence of heavy metals (Ni, Cu and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Front Plant Sci 9:862

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran J Toxicol 3(3):325–334

    Google Scholar 

  • Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017) Metals toxic effects in aquatic ecosystems: modulators of water quality. In: Water quality. Intech Open, Rijeka

    Google Scholar 

  • Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A Math Phys Eng Sci 471(2174):20140792

    Google Scholar 

  • Hou W, Chen X, Songm G, Wangm QC, Chang C (2007) Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  PubMed  Google Scholar 

  • Ikram S, Parvaiz M, Ahmed M, Ilyas U, Khalid A, Munir M, Anwar S, Afzal H (2013) Aquatic plants of Sialkot district, Pakistan. World Appl Sci J 28(6):884–896

    Google Scholar 

  • Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drumondiiallus. Arch Environ Contam Toxicol 50:121–127

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JA, Testa SM (2005) Overview of chromium (VI) in the environment background and history. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium (VI) handbook. CRC, Boca Raton, FL, pp 1–22

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus root. J Exp Bot 5(9):3721–3728

    Article  CAS  Google Scholar 

  • Javed MT, Akram MS, Tanwir K, Chaudhary HJ, Ali Q, Stoltz E, Lindberg S (2017) Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicol Environ Saf 141:216–225

    Article  CAS  PubMed  Google Scholar 

  • Javed MT, Akram MS, Habib N, Tanwir K, Ali Q, Niazi NK, Iqbal N (2018) Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environ Sci Pollut Res 25(3):2958–2971

    Article  CAS  Google Scholar 

  • Javed M, Tanwir KT, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Cadmium toxicity and tolerance in plants. Academic, New York, pp 495–529

    Chapter  Google Scholar 

  • Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7(3):1247–1253

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Plant Physiol J 165:920–931

    Article  CAS  Google Scholar 

  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223(2):877–888

    Article  CAS  Google Scholar 

  • Li B, Liang P, Wei D, Lei M, Liu B, Lin Y, Li Z, Jidong G (2017) Enhanced flocculation and sedimentation of trace cadmium from irrigation water using phosphoric fertilizer. Sci Total Environ 601–602:485–492

    Article  CAS  PubMed  Google Scholar 

  • Lindberg S, Wingstrand G (1985) Mechanism for Cd2+ inhibition of (K+ + Mg2+)ATPase activity and K+ (86Rb+) uptake join roots of sugar beet (Beta vulgaris). Physiol Plant 63(2):181–186

    Article  CAS  Google Scholar 

  • Lindberg S, Landberg T, Greger M (2004) A new method to detect cadmium uptake in protoplasts. Planta 219:526–532

    Google Scholar 

  • Liu W, Zhang X, Liang L, Chen C, Wei S, Zhou O (2015) Phytochelatin and oxidative stress under heavy metal stress tolerance in plants. In: Gupta DK et al (eds) Reactive oxygen species and oxidative damage in plants under stress. https://doi.org/10.1007/978-3-319-20421-5_8

    Chapter  Google Scholar 

  • Lu T, Liu JY, Zhang RQ, Zhao NM (2003) Modeling rice rgMT as a plant metallothionein-like protein by the distance geometry and homology methods. Acta Bot Sin 45:1297–1306

    CAS  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 3(9):451–464

    Google Scholar 

  • Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 6(6):421–427

    Article  CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzalka K (2009) Identification and characterization of Cd induced peptides in Egeria densa (Water Weed): putative role in Cd detoxification. Aquat Toxicol 95:213–221

    Article  CAS  PubMed  Google Scholar 

  • Mami Y, Ahmadi G, Shahmoradi M, Ghorbani HR (2011) Influence of different concentration of heavy metals on the seed germination and growth of tomato. Afr J Environ Sci Technol 5:420–426

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic press, New York, Boston, London

    Chapter  Google Scholar 

  • Marquez-Garcia B, Cordoba F (2010) Antioxidative system in wild populations of Erica and evalensis. Environ Exp Bot 68:58–65

    Article  CAS  Google Scholar 

  • Materac M, Sobiecka E (2017) The efficiency of macrophytes for heavy metals removal from water. Biotechnol Food Sci 81(1):35–40

    Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).J. Hazard Mater 164(2–3):1059–1063

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Iqbal M, Khan R, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  CAS  Google Scholar 

  • Neuhaus HE, Trentmann O (2014) Regulation of transport processes across the tonoplast. Front Plant Sci 5:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Newete SW, Erasmus BF, Weiersbye IM, Byrne MJ (2016) Sequestration of precious and pollutant metals in bio mass of cultured water hyacinth (Eichhorniacrassipes). Environ Sci Pollut Res 2(3):20805–20818

    Article  CAS  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. N Biotechnol 30(1):3–8

    Article  PubMed  CAS  Google Scholar 

  • Pajevic S, Kevresan Z, Vuckovic M, Radulovic D, Frontasayeva M, Pavlov S, Galinskaya Y (2004) Aquatic macrophytes as biological resources for monitoring the impacts of heavy metals on the aquatic environment. Int Assoc Danube Res 35:323–330

    Google Scholar 

  • Patlolla A, Barnes C, Yedjou C, Velma V, Tchounwou PB (2009) Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environ Toxicol 24(1):66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392:22–29

    Article  CAS  PubMed  Google Scholar 

  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  • Rahman MJ, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  • Rahman T, Hosen I, Islam TM, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3:997–1019

    Article  CAS  Google Scholar 

  • Rai PK (2010) Microcosme investigation on phytoremediation of Cr using Azolla pinnata. Int J Phytol 2:96–104

    Google Scholar 

  • Rai PK (2016) Impacts of particulate matter pollution on plants: implications for environmental biomonitoring. Ecotoxicol Environ Saf 129:120–136

    Article  CAS  PubMed  Google Scholar 

  • Rajeswari TR, Sailaja N (2014) Impact of heavy metals on environmental pollution. Chem Pharm J Res 3:175–181

    Google Scholar 

  • Rakhshaee R, Giahi M, Pourahmad A (2009) Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.J. Hazard Mater 163(1):165–173

    Article  CAS  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase of a protease a peptide polymerase made. Physiol Plant 145:154–164

    Article  CAS  PubMed  Google Scholar 

  • Romero-Oliva CS, Contardo-Jara V, Pflugmacher S (2015) Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 105:62–73

    Article  CAS  PubMed  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5(2):89–103

    Article  CAS  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants—a review. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress; role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  CAS  PubMed  Google Scholar 

  • Shestivska V, Adam V, Prasek J, Macek T, Mackova M, Havel L, Diopan V, Zehnalek J, Hubalek J, Kizek R (2011) Investigation of the antioxidant properties of metallothionein in transgenic tobacco plants using voltammetry at a carbon paste electrode. Int J Electrochem Sci 6:2869–2883

    CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and ionomics. Front Plant Sci 6:1143

    PubMed  Google Scholar 

  • Sinha RK, Herat S, Tandon PK (2004) Phytoremediation role of plants in contaminated site management. In: Book of environmental bioremediation technologies. Springer, Berlin, pp 315–330

    Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    Article  CAS  PubMed  Google Scholar 

  • Song FQ, Yang GT, Meng FR, Tian XJ, Dong AR (2004) The rhizospheric niche of seedlings of populus ussuriensis colonized by arbuscular mycorrhizal (AM) fungi. Ecol Environ 13:211–216

    Google Scholar 

  • Stoltz E, Greger M (2002) Cottongrass effects on trace elements in submersed mine tailings. J Environ Qual 31(5):1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Sylwia W, Anna R, Ewa B, Stephan C, Danuta MA (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tanwir K, Akram SA, Masood S, Chaudhary HJ, Lindberg S, Javed MT (2015) Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environ Sci Pollut Res 22(12):9193–9203

    Article  CAS  Google Scholar 

  • Tariq Javed M, Stoltz E, Lindberg S, Greger M (2013) Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements. Environ Sci Pollut Res 20(3):1876–1880

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Thayaparan M (2013) Rhizofiltration of Pb by Azolla Pinnata. Int J Environ Sci 3(6):1811

    Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species. Plant Physiol 157(4):1914–1925

    Google Scholar 

  • VanLoon GW, Duffy SJ (2000) Environmental chemistry – A global perspective. Oxford University Press, New York, pp 366–385

    Google Scholar 

  • Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24(2):129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XF, Xing ML, Shen Y, Zhu X, Xu LH (2006) Oral administration of Cr (VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology 228:16–23

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Chen S, Miao Y, Wu F, Zhang G (2008) Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ Pollut 155(2):284–289

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Cheng Z, Hu YT, Jiang T, Yu L, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant Cell Environ 34(7):1055–1064

    Article  CAS  Google Scholar 

  • Xin J, Huang B, Dai H, Zhou W, Yi Y, Peng L (2015) Roles of rhizosphere and root derived organic acids in Cd accumulation by two hot pepper cultivars. Environ Sci Pollut Res 22(8):6254–6261

    Article  CAS  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyper accumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    Article  CAS  PubMed  Google Scholar 

  • Xue PY, Li GX, Liu WJ, Yan CZ (2010) Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Xue P, Yan C, Sun G, Luo Z (2012) Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environ Sci Pollut Res 19:3969–3976

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tariq Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanwir, K. et al. (2020). Ecophysiology and Stress Responses of Aquatic Macrophytes Under Metal/Metalloid Toxicity. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_16

Download citation

Publish with us

Policies and ethics