Skip to main content

High-Temperature Tolerance of Flowers

Abstract

Similar to the other crops, production of floricultural plants (crops for ornamental purposes) is susceptible to high temperature. High temperature changes flowering time, causing problems in the schedule of shipment to the market. Consistent with the idea of plant adaptation to climate, induction of long-day spring flowers (Arabidopsis/thale cress) is accelerated by high temperature, whereas induction of short-day autumn flowers (chrysanthemum) is delayed by high temperature. High temperature also reduces flower size and causes paler petal colors (e.g. chrysanthemum, rose, and Eustoma) and fruit skin colors (e.g. grape and apple), thus decreasing the quality of flowers and fruits. The reasons for high-temperature caused disorders are not necessarily clear, but high temperature influences part of gene expressions involved in flowering time (FT, Flowering Locus T) and pigment synthesis (such as CHS, chalcone synthase). High-temperature-tolerant cultivars are identified or selected in floricultural and pomological (fruit) crops. High-temperature effects could be alternatively attenuated by shading or supplementation of magnesium. Heat is sometimes required for flowers: some plant species generate heat in flowers by themselves. Petal color affects flower temperature. Relationships between flower and heat in these various aspects are illustrated by photographs and illustrations of the representative studies in this research field.

Keywords

  • Extreme temperature
  • Flowering habit
  • Flower coloration
  • Heat stress

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-2156-0_12
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-2156-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13
Fig. 12.14
Fig. 12.15

References

  • Azuma A, Ban Y, Sato A, Kono A, Shiraishi M, Yakushiji H, Kobayashi S (2015) MYB diplotypes at the color locus affect the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins in grape berry skin. Tree Genet Gnomes 11:31

    CrossRef  Google Scholar 

  • Barthlott W, Szarzynski J, Vlek P, Lobin W, Korotkova N (2009) A torch in the rain forest: thermogenesis of the Titan arum (Amorphophallus titanum). Plant Biol 11:499–505

    CAS  PubMed  CrossRef  Google Scholar 

  • Berkeley Earth (2019). http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_summary.txt

  • Berman J, Sheng Y, Gómez LG, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P (2016) Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLoS One 11:e0162410

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Biran I, Halevy AH (1974) Effects of short-term heat and shade treatments on petal colour of ‘Baccara’ roses. Physiol Plant 31:180–185

    CrossRef  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Pertejo MA, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carvalho SMP, Abi-Tarabay H, Heuvelink E (2005) Temperature affects Chrysanthemum flower characteristics differently during three phases of the cultivation period. J Hortic Sci Biotechnol 80:209–216

    CrossRef  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    CAS  CrossRef  Google Scholar 

  • Civello PM, Martínez GA, Chaves AR, Añón MC (1997) Heat treatments delay ripening and postharvest decay of strawberry fruit. J Agric Food Chem 45:4589–4594

    CAS  CrossRef  Google Scholar 

  • Cna’ani A, Mühlemann JK, Ravid J, Masci T, Klempien A, Nguyen TTH, Dudareva N, Pichersky E, Vainstein A (2015) Petuania × hybrida floral scent production is negatively affected by high-temperature growth conditions. Plant Cell Environ 38:1333–1346

    PubMed  CrossRef  CAS  Google Scholar 

  • Coberly LC, Rausher MD (2003) Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Mol Ecol 12:1113–1124

    CAS  PubMed  CrossRef  Google Scholar 

  • Cook GD, Dixon JR, Leopold AC (1964) Transpiration: its effects on plant leaf temperature. Science 144:546–547

    CAS  PubMed  CrossRef  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    CAS  PubMed  CrossRef  Google Scholar 

  • Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci 164:333–340

    CAS  CrossRef  Google Scholar 

  • Elthon TE, Nickels RL, McIntosh L (1989) Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol 89:1311–1317

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fatihah HN, López DM, van Arkel G, Schaart JG, Visser RG, Krens FA (2019) The ROSEA1 and DELILA transcription factors control anthocyanin biosynthesis in Nicotiana benthamiana and Lilium flowers. Sci Hortic 243:327–337

    CAS  CrossRef  Google Scholar 

  • Fukushima K, Katsutani N, Imamura H, Takezaki A, Minami M (2009) Night temperature for growing Eustoma seedlings after low-temperature treatment of seeds, which is effective to avoid rosetting. https://www.naro.affrc.go.jp/org/warc/research_results/h17/09_kaki/p309/index.html

  • Hakata M, Wada H, Masumoto-Kubo C, Tanaka R, Sato H, Morita S (2017) Development of a new heat tolerance assay system for rice spikelet sterility. Plant Methods 13:34

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Harbaugh BK, Scott JW (2005) ‘Florida Blue Frill’ and ‘Florida Pink Frill’—Semi-dwarf heat-tolerant Lisianthus with bicolored flowers. Hortic Sci 40:861–863

    Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirata H, Ohnishi T, Tomida K, Ishida H, Kanda M, Sakai M, Yoshimura J, Suzuki H, Ishikawa T, Dohra H, Watanabe N (2016) Seasonal induction of alternative principal pathway for rose flower scent. Sci Rep 6:20234

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang KL, Miyajima I, Okubo H (2000) Effects of temperature and shade treatment on flower colors and characteristics in newly established reddish-purple tuberose (Polianthes). J Fac Agric Kyushu Univ 45:57–63

    CAS  Google Scholar 

  • Ishimaru T, Hirabayashi H, Sasaki K, Ye C, Kobayashi A (2016) Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod Sci 19:12–21

    CAS  CrossRef  Google Scholar 

  • Kakizaki Y, Moore Anthony L, Ito K (2012) Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochem J 445:237–246

    CAS  PubMed  CrossRef  Google Scholar 

  • Kamata T, Matsukawa K, Kakizaki Y, Ito K (2009) In vivo redox state of the ubiquinone pool in the spadices of the thermogenic skunk cabbage, Symplocarpus renifolius. J Plant Res 122:645–649

    CAS  PubMed  CrossRef  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    CAS  PubMed  CrossRef  Google Scholar 

  • Karlsson MG, Heins RD, Erwin JE, Berghage RD, Carlson WH, Biernbaum JA (1989) Irradiance and temperature effects on time of development and flower size in Chrysanthemum. Sci Hortic 39:257–267

    CrossRef  Google Scholar 

  • Kasajima I (2016) Alexandrite-like effect in purple flowers analyzed with newly devised round RGB diagram. Sci Rep 6:29630

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kasajima I (2019) Measuring plant colors. Plant Biotechnol 36:63–75

    CAS  CrossRef  Google Scholar 

  • Kikuchi T, Kasajima I, Morita M, Yoshikawa N (2017) Practical DNA markers to estimate apple (Malus × domesticaBorkh.) skin color, ethylene production and pathogen resistance. J Hortic 4:1000211

    CrossRef  Google Scholar 

  • Kim TS, Kim WY, Fujiwara S, Kim J, Cha JY, Park JH, Lee SY, Somers DE (2011) HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc Natl Acad Sci USA 108:16843–16,848

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746–747

    CAS  PubMed  CrossRef  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    CAS  PubMed  CrossRef  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    CAS  PubMed  CrossRef  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    CAS  PubMed  CrossRef  Google Scholar 

  • Kortstee AJ, Khan SA, Helderman C, Trindade LM, Wu Y, Visser RG, Brendolise C, Allan A, Schouten HJ, Jacobsen E (2011) Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Res 20:1253–1264

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI (2018) The impact of the phytochromes on photosynthetic processes. Biochim Biophys Acta Bioenerg 1859:400–408

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lacey EP, Herr D (2005) Phenotypic plasticity, parental effects, and parental care in plants? I. An examination of spike reflectance in Plantagolanceolata (Plantaginaceae). Am J Bot 92:920–930

    PubMed  CrossRef  Google Scholar 

  • Lamarck JB (1778) Flore Française, ou, Description succinctes de toutes les plantes qui croissentnaturellementen France, vol 3, 2nd edn. Impr. Natl, Paris

    Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    CAS  PubMed  CrossRef  Google Scholar 

  • Liang S, Wu X, Byrne D (2017) Flower-size heritability and floral heat-shock tolerance in diploid roses. Hort Science 52:682–685

    CrossRef  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    PubMed  CrossRef  CAS  Google Scholar 

  • McKee J, Richards AJ (1998) Effect of flower structure and flower colour on intrafloral warming and pollen germination and pollen-tube growth in winter flowering Crocus L. (Iridaceae). Bot J Linn Soc 128:369–384

    Google Scholar 

  • Meeuse BJD (1975) Thermogenic respiration in aroids. Annu Rev Plant Physiol 26:117–126

    CAS  CrossRef  Google Scholar 

  • Meeuse BJD, Raskin I (1988) Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Reprod 1:3–15

    CrossRef  Google Scholar 

  • Miyake K (1898) Some physiological observations on Nelumbo nucifera, Gærtn. Bot Mag Tokyo (ShokubutugakuZasshi) 12:112–117. https://www.jstage.jst.go.jp/article/jplantres1887/12/142/12_142_112/_article/-char/ja/

    CrossRef  Google Scholar 

  • Monteiro JA, Nell TA, Barrett JE (2001) High production temperature increases postproduction flower longevity and reduces bud drop of poted, miniature roses ‘Meirutral’ and ‘Meidanclar’. Hortscience 36:953–954

    CrossRef  Google Scholar 

  • Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663

    CAS  PubMed  CrossRef  Google Scholar 

  • Motozu T, Komagata T, Ichimura T, Asano A (2000) Observation on the development of forced freesia flower buds exposed to high temperature just after chilling and morphological classification of heat injury at flowering. J Jpn Soc Hortic Sci 69:109–114. (in Japanese)

    CrossRef  Google Scholar 

  • Mu J, Li G, Sun S (2010) Petal color, flower temperature, and behavior in an alpine annual herb, Gentiana leucomelaena (Gentianaceae). Arct Antarct Alp Res 42:219–226

    CrossRef  Google Scholar 

  • Nakano Y, Higuchi Y, Sumitomo K, Hisamatsu T (2013) Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression. J Exp Bot 64:909–920

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    CAS  PubMed  CrossRef  Google Scholar 

  • Nie Z-L, Sun H, Li H, Wen J (2006) Intercontinental biogeography of subfamily Orontioideae (Symplocarpus, Lysichiton, and Orontium) of Araceae in eastern Asia and North America. Mol Phylogenet Evol 40:155–165

    CAS  PubMed  CrossRef  Google Scholar 

  • Nozaki K, Fukai S, Takamura T (2005) Effects of growing season on flower color and flowering in pink flower genotypes of spray chrysanthemum. Hortic Res 4:197–201. (in Japanese)

    CrossRef  Google Scholar 

  • Nozaki K, Takamura T, Fukai S (2006) Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotehcnol 81:728–734

    CAS  CrossRef  Google Scholar 

  • Onda Y, Kato Y, Abe Y, Ito T, Ito-Inaba Y, Morohashi M, Ito Y, Ichikawa M, Matsukawa K, Otsuka M, Koiwa H, Ito K (2007) Pyruvate-sensitive AOX exists as a non-covalently associated dimer in the homeothermic spadix of the skunk cabbage, Symplocarpus renifolius. FEBS Lett 581:5852–5858

    CAS  PubMed  CrossRef  Google Scholar 

  • Onda Y, Kato Y, Abe Y, Ito T, Morohashi M, Ito Y, Ichikawa M, Matsukawa K, Kakizaki Y, Koiwa H, Ito K (2008) Functional coexpression of the mitochondrial alternative oxidase and uncoupling protein underlies thermoregulation in the thermogenic florets of skunk cabbage. Plant Physiol 146:636–645

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Prasad PV, Craufurd PQ, Summerfield RJ, Wheeler TR (2000) Effects of short episodes of heat stress on flower prodiction and fruit-set of groundnut (Arachis hypogaea L.). J Exp Bot 51:777–784

    CAS  PubMed  Google Scholar 

  • Puangkrit T, Narumi-kawasaki T, Takamura T, Fukai S (2018) Inflorescence developmental stage-specific high temperature effect on petal pigmentation in chrysanthemum. Environ Control Biol 56(3):99–106

    CAS  CrossRef  Google Scholar 

  • Quattrocchio F, Wing JF, Va K, Mol JN, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    CAS  PubMed  CrossRef  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJ (1987) Salicylic acid: a natural inducer of heat production in arum lilies. Science 237:1601–1602

    CAS  PubMed  CrossRef  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86:2214–2218

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelly A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2:e648

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, Morneau K, Wang H, Undurraga S, Queitsch C, Lindquist S (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:2969–2974

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Sayed MA, Umekawa Y, Ito K (2016) Metabolic interplay between cytosolic phosphoenolpyruvate carboxylase and mitochondrial alternative oxidase in thermogenic skunk cabbage, Symplocarpus renifolius. Plant Signal Behav 11:e1247138

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Schwinn KE, Davies KM (2004) Flavonoids. Annu Plant Rev. 14:92–149

    CAS  Google Scholar 

  • Seymour RS (2010) Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. Plant Cell Environ 33:1474–1485

    PubMed  Google Scholar 

  • Seymour RS, Schultze-Motel P (1996) Thermoregulating lotus flowers. Nature 383:305–305

    CAS  CrossRef  Google Scholar 

  • Seymour RS, Schultze-Motel P (1998) Physiological temperature regulation by flowers of the sacred lotus. Philos Trans R Soc Lond B Biol Sci 353:935–943

    PubMed Central  CrossRef  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Seymour RS, Ito Y, Onda Y, Ito K (2009a) Effects of floral thermogenesis on pollen function in Asian skunk cabbage Symplocarpus renifolius. Biol Lett 5:568–570

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seymour RS, Maass E, Bolin JF (2009b) Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa. Annal Bot 104:823–832

    CrossRef  Google Scholar 

  • Seymour R, Lindshau G, Ito K (2010) Thermal clamping of temperature-regulating flowers reveals the precision and limits of the biochemical regulatory mechanism. Planta 231:1291–1300

    CAS  PubMed  CrossRef  Google Scholar 

  • Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol Plant 114:559–565

    CAS  PubMed  CrossRef  Google Scholar 

  • Shvarts M, Borochov A, Weiss D (1997) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol Plant 99:67–72

    CAS  CrossRef  Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    CAS  PubMed  CrossRef  Google Scholar 

  • Steyn WJ, Wand SJ, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    CAS  CrossRef  PubMed  Google Scholar 

  • Stiles EA, Cech NB, Dee SM, Lacey EP (2007) Temperature-sensitive anthocyanin production in flowers of Plantagolanceolata. Physiol Plant 129:756–765

    CAS  CrossRef  Google Scholar 

  • Suraweera DD, Nicolas ME, Groom T (2016) Effect of short periods of heat stress during early flowering period on flower development and pyrethrin accumulation in pyrethrum. Acta Hortic 1125:121–128. https://doi.org/10.17660/ActaHortic.2016.1125.15

    CrossRef  Google Scholar 

  • Takeno K (2016) Stress-induced flowering: the third category of flowering response. J Exp Bot 67:4925–4934

    CAS  PubMed  CrossRef  Google Scholar 

  • Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsuji H (2017) Molecular function of florigen. Breed Sci 67:327–332

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Umekawa Y, Ito K (2018) Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius. J Biochem 165:57–65

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Umekawa Y, Seymour RS, Ito K (2016) The biochemical basis for thermoregulation in heat-producing flowers. Sci Rep 6:24830

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37,804

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang KZ, Xia C, Liu XL, Dou XY, Wang W, Chen LQ, Zhang XQ, Xie LF, He L, Ma X, Ye D (2009) A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J 57:870–882

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam MR, Jin Q, Tao L, Fu G (2018) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11:14

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhao D, Tao J (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6:261

    PubMed  PubMed Central  Google Scholar 

  • Zhao D, Hao Z, Tao J (2012) Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol Biochem 61:187–196

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

We appreciate Professor Mirza Hasanuzzaman for suggesting us the chance to submit a review on the present theme. The number of references is relatively small for a review article, but each work, especially the beautiful figures cited in the present report, would have been performed by much efforts. We all authors would like to deeply appreciate the authors of these excellent works for publishing important knowledge on high-temperature response and tolerance of flowers. We would also like to appreciate Professor Kikukatsu Ito for providing the pictures of skunk cabbage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Kasajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hegde, S., Umekawa, Y., Watanabe, E., Kasajima, I. (2020). High-Temperature Tolerance of Flowers. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_12

Download citation