Skip to main content

Evaluating the Effects of Tidal Turbines on Water-Mass Transport with the Lagrangian Barycentric Method

  • Conference paper
  • First Online:
Estuaries and Coastal Zones in Times of Global Change

Part of the book series: Springer Water ((SPWA))

  • 740 Accesses

Abstract

Characterising circulation pathways in tidal stream energy sites is fundamental to evaluate the effects of turbines power extraction on the transport of water-mass and associated particles. The Lagrangian residual currents are commonly considered to assess the displacement of water particles over the tidal period. The associated circulation is, however, characterised by a strong dispersion as water particles may follow different trajectories depending on the release time during a tidal cycle. In order to obtain a synthetic cartography of the Lagrangian Residual Circulation (LRC), Salomon et al. (1988) proposed an original method allocating the residual currents at the barycentre of particle trajectories. This Lagrangian barycentric method was here applied to the Fromveur Strait (western Brittany)—a region with strong potential for turbine farm implementation along the coast of France. A high-resolution depth-averaged numerical model computed the tidal circulation driven by the principal lunar semi-diurnal constituent M2. The initial particle positions were taken at the 14,026 nodes of the unstructured computational grid surrounding the area of interest with a spatial resolution below 50 m. In the strait, the LRC was characterised by a strong asymmetry between (i) a prominent north-eastern pathway with residual currents up to 0.45 ms−1 and (ii) a southward circulation. Both upstream and downstream of the strait, we exhibited furthermore prominent cyclonic and anti-cyclonic recirculations. A close correlation was found between the north eddy and a prominent sand bank. We simulated finally the forces induced by a series of horizontal-axis turbines as an additional bed friction sink term at the scale of the tidal farm. The extraction of tidal stream energy modified the magnitude and direction of the LRC along the current stream emerging from the strait with (i) a tendency for surrounding eddies to get closer to the tidal stream energy site and (ii) potential effects on nearby sandbanks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breton, M., & Salomon, J. C. (1995). A 2D long-term advection-dispersion model for the Channel and southern North Sea. Part A: Validation through comparison with artificial radionuclides. Journal of Marine Systems, 6(5–6), 495–514.

    Article  Google Scholar 

  • EDF R&D. (2013). TELEMAC modelling system—TELEMAC-3D software – release 6.2. Technical report, EDF.

    Google Scholar 

  • Edwards, K., Hare, J., Werner, F., & Blanton, B. (2006). Lagrangian circulation on the Southeast US Continental Shelf: Implications for larval dispersal and retention. Continental Shelf Research, 26, 1375–1394.

    Article  Google Scholar 

  • Egbert, G., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.

    Article  Google Scholar 

  • Fairley, I., Masters, I., & Karunarathna, H. (2015). The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth. Renewable Energy, 80, 755–769.

    Article  Google Scholar 

  • Guillou, N., & Chapalain, G. (2010). Numerical simulation of tide-induced transport of heterogeneous sediments in the English Channel. Continental Shelf Research, 30, 806–819.

    Article  Google Scholar 

  • Guillou, N., & Chapalain, G. (2011). Effects of waves on the initiation of headland-associated sandbanks. Continental Shelf Research, 31, 1202–1213.

    Article  Google Scholar 

  • Guillou, N., & Chapalain, G. (2015). Numerical modelling of nearshore wave energy resource in the Sea of Iroise. Renewable Energy, 83, 942–953.

    Article  Google Scholar 

  • Guillou, N., & Thiébot, J. (2016a). The impact of seabed rock roughness on tidal stream power extraction. Energy, 112, 762–773.

    Article  Google Scholar 

  • Guillou, N., & Thiébot, J. (2016b). Environmental impact of a tidal stream farm: predictions sensitivity to bottom roughness. 15èmes Journées de l’Hydrodynamique, Brest.

    Google Scholar 

  • Guillou, N., Chapalain, G., & Neill, S. P. (2016). The influence of waves on the tidal kinetic energy resource at a tidal stream energy site. Applied Energy, 180, 402–415.

    Article  Google Scholar 

  • Guillou, N. (2017). Modelling effects of tidal currents on waves at a tidal stream energy site. Renewable Energy, 114, 180–190.

    Article  Google Scholar 

  • Guillou, N., & Chapalain, G. (2017a). Assessing the impact of tidal stream energy extraction on the Lagrangian circulation. Applied Energy, 203, 321–332.

    Article  Google Scholar 

  • Guillou, N., & Chapalain, G. (2017b). Tidal Turbines’ layout in a stream with asymmetry and misalignment. Energies, 10, 1892.

    Article  Google Scholar 

  • Guillou, N., Neill, S. P., & Robins, P. E. (2018). Characterising the tidal stream power resource around France using a high-resolution harmonic database. Renewable Energy, 123, 706–718.

    Article  Google Scholar 

  • Hervouet, J. M. (2007). Hydrodynamics of free surface flows, modelling with the finite element method. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Joly, A., Goeury, C., & Hervouet, J. M. (2014). Adding a particle transport module to Telemac-2D with applications to algae blooms and oil spills. Technical report, EDF R&D.

    Google Scholar 

  • Muller, H., Blanke, B., Dumas, F., Lekien, F., & Mariette, V. (2009). Estimating the Lagrangian residual circulation in the Iroise Sea. Journal of Marine Systems, 78, S17–S36.

    Article  Google Scholar 

  • Neill, S. P., Jordan, J. R., & Couch, S. J. (2012). Impact of tidal energy convertor (TEC) arrays on the dynamics of headland sand banks. Renewable Energy, 37, 387–397.

    Article  Google Scholar 

  • Neill, S. P., Hashemi, R., & Lewis, M. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.

    Article  Google Scholar 

  • Neill, S. P., & Scourse, J. D. (2009). The formation of headland/island sandbanks. Continental Shelf Research, 29, 2167–2177.

    Article  Google Scholar 

  • Orbi, A., & Salomon, J. C. (1988). Dynamique de marée dans le Golfe Normand-Breton. Oceanologica Acta, 11(1), 55–64.

    Google Scholar 

  • Pingree, R., & Maddock, L. (1978). The M4 tide in the English Channel derived from a non-linear numerical model of the M2 tide. Deep-Sea Research, 25, 53–63.

    Article  Google Scholar 

  • Pineau-Guillou, L. (2013). PREVIMER Validation des atlas de composantes harmoniques de hauteurs et courants de marée. Technical report, Ifremer.

    Google Scholar 

  • Plew, D., & Stevens, C. (2013). Numerical modelling of the effects of turbines on currents in a tidal channel—Tory Channel, New Zealand. Renewable Energy, 57, 269–282.

    Article  Google Scholar 

  • Pouvreau N. (2008). Trois cents ans de mesures marégraphiques en France: outils, méthodes et tendances des composantes du niveau de la mer au port de Brest. Ph.D. thesis. Université de La Rochelle.

    Google Scholar 

  • Salomon, J. C., Guéguéniat, P., Orbi, A., & Baron, Y. (1988). A Lagrangian model for long-term tidally induced transport and mixing. Verification by artificial radionuclide concentrations. In J. Guary, & P. Guéguéniat (Eds.), Radionuclides: A tool for oceanography (pp. 384–394). London, New York: Elsevier Applied Science Publishers.

    Google Scholar 

  • Salomon, J. C., & Breton, M. (1993). An atlas of long-term currents in the channel. Oceanologica Acta, 16(5–6), 439–448.

    Google Scholar 

  • Sanderson, B., & Redden, A. (2015). Perspective on the risk that sediment-laden ice poses to in-stream tidal turbines in Minas Passage, Bay of Fundy. International Journal of Marine Energy, 10, 52–69.

    Article  Google Scholar 

  • Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.

    Article  Google Scholar 

  • Sinha, B., & Pingree, R. D. (1997). The principal lunar semidiurnal tide and its harmonics: baseline solutions for M2 and M4 constituents on the North-West European Continental Shelf. Continental Shelf Research, 1(11), 1321–1365.

    Article  Google Scholar 

  • Thiébot, J., Bailly du Bois, P., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.

    Article  Google Scholar 

  • Zimmermann, J. T. F. (1979). On the Euler-Lagrangian transformation and the Stokes drift in the presence of oscillatory and residual currents. Deep-Sea Research, 26 A, 505–520.

    Google Scholar 

Download references

Acknowledgements

The authors warmly thank Jean-Michel Hervouet (EDF R&D) for his support in applying the particle transport module of Telemac 2D. Simulations were performed with the HPC facilities DATARMOR of “Pôle de Calcul et de Données pour la Mer” (PCDM). The present chapter is a contribution to the research program DIADEME (“Design et InterActions des Dispositifs d’extraction d’Energies Marines avec l’Environnement”) of the Laboratory of Coastal Engineering and Environment (Cerema, http://www.cerema.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Guillou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guillou, N., Chapalain, G. (2020). Evaluating the Effects of Tidal Turbines on Water-Mass Transport with the Lagrangian Barycentric Method. In: Nguyen, K., Guillou, S., Gourbesville, P., Thiébot, J. (eds) Estuaries and Coastal Zones in Times of Global Change. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-15-2081-5_14

Download citation

Publish with us

Policies and ethics