Skip to main content

US- and U-Eigenpairs of Complex Tensors

  • Chapter
  • First Online:
Theory and Computation of Complex Tensors and its Applications
  • 812 Accesses

Abstract

In this chapter we discuss the computation of US-eigenpairs of complex symmetric tensors and U-eigenpairs of complex tensors. We derive an iterative algorithm for computing US-eigenpairs of complex symmetric tensors which is based on the Takagi factorization of complex symmetric matrices that are denoted as the QRCST Algorithm. We observe that multiple US-eigenpairs can be found from a local permutation heuristic, which is effectively a tensor similarity transformation, resulting in the permuted version of QRCST. We also present a generalization of their techniques to general complex tensors and derive a higher-order power type method for computing a US- or a U-eigenpair, similar to the higher-order power method for computing Z-eigenpairs of real symmetric tensors or a best rank-one approximation of real tensors. We illustrate the algorithms via numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Ni, L. Qi, M. Bai, Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35(1), 73–87 (2014)

    Article  MathSciNet  Google Scholar 

  2. T. Wei, P. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)

    Google Scholar 

  3. S. Ragnarsson, C. Van Loan, Block tensors and symmetric embeddings. Linear Algebra Appl. 438(2), 853–874 (2013)

    Article  MathSciNet  Google Scholar 

  4. L. Autonne, Sur les matrices hypo-hermitiennes et sur les matrices unitaires. Ann. Univ. Lyon Nouv. Sér. I FASC 38, 1–77 (1915)

    MATH  Google Scholar 

  5. R. Horn, C. Johnson, Matrix Analysis, 2nd edn. (Cambridge University, Cambridge, 2014)

    Google Scholar 

  6. L. Hua, On the theory of automorphic functions of a matrix variable, II-the classification of hypercircles under the symplectic group. Am. J. Math. 66(4), 531–563 (1944)

    MATH  Google Scholar 

  7. L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  8. L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13(1), 113–125 (2015)

    Article  MathSciNet  Google Scholar 

  9. J. Papy, L. De Lathauwer, S. Van Huffel, Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12(8), 809–826 (2005)

    Article  MathSciNet  Google Scholar 

  10. W. Ding, L. Qi, Y. Wei, Fast Hankel tensor-vector products and application to exponential data fitting. Numer. Linear Algebra Appl. 22(5), 814–832 (2015)

    Article  MathSciNet  Google Scholar 

  11. L. Sorber, M. Van Barel, L. De Lathauwer, Unconstrained optimization of real functions in complex variables. SIAM J. Optim. 22(3), 879–898 (2012)

    Article  MathSciNet  Google Scholar 

  12. S. Zhang, Y. Xia, J. Wang, A complex-valued projection neural network for constrained optimization of real functions in complex variables. IEEE Trans. Neural Netw. 26(12), 3227–3238 (2015)

    Article  MathSciNet  Google Scholar 

  13. S. Zhang, Y. Xia, W. X. Zheng, A complex-valued neural dynamical optimization approach and its stability analysis. Neural Netw. 61, 59–67 (2015)

    Article  Google Scholar 

  14. E. Kofidis, P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  15. L. De Lathauwer, B. De Moor, J. Vandewalle, On the best rank-1 and rank-(r 1, r 2, ..., r n) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  16. M. Ishteva, P. Absil, P. Van Dooren, Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors. SIAM J. Matrix Anal. Appl. 34(2), 651–672 (2013)

    Article  MathSciNet  Google Scholar 

  17. J. Nie, L. Wang, Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35(3), 1155–1179 (2014)

    Article  MathSciNet  Google Scholar 

  18. A. Boralevi, J. Draisma, E. Horobet, E. Robeva, Orthogonal and Unitary Tensor Decomposition from an Algebraic Perspective (2014). ArXiv preprint:1512.08031v1

    Google Scholar 

  19. B. Jiang, Z. Li, S. Zhang, Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J. Matrix Anal. Appl. 37(1), 381–408 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Che, M., Wei, Y. (2020). US- and U-Eigenpairs of Complex Tensors. In: Theory and Computation of Complex Tensors and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2059-4_7

Download citation

Publish with us

Policies and ethics