Skip to main content
  • 809 Accesses

Abstract

An increasing number of applications in signal processing, data analysis and higher-order statistics, as well as independent component analysis involve the manipulation of data whose elements are addressed by more than two indices. In the literature, these higher-order extensions of vectors (first-order) and matrices (second-order) are called higher-order tensors , multi-dimensional matrices , or multiway arrays .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Cardoso, High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  2. A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao, D. Mandic, Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4-5), 249–429 (2016)

    Article  MATH  Google Scholar 

  3. P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  4. P. Comon, Tensor decompositions: state of the art and applications, in Mathematics in Signal Processing, V (Coventry, 2000). The Institute of Mathematics and its Applications Conference Series, vol. 71 (Oxford University, Oxford, 2002), pp. 1–24

    Google Scholar 

  5. C. Nikias, J. Mendel, Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  6. P. Comon, G. Golub, L. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Kolda, B. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Cichocki, R. Zdunek, A. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, New York, 2009)

    Book  Google Scholar 

  9. Y. Yang, Q. Yang, A Study on Eigenvalues of Higher-Order Tensors and Related Polynomial Optimization Problems (Science, Beijing, 2015)

    Google Scholar 

  10. L. Qi, Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors (Society of Industrial and Applied Mathematics, Philadelphia, 2017)

    Book  MATH  Google Scholar 

  11. Y. Wei, W. Ding, Theory and Computation of Tensors: Multi-Dimensional Arrays (Academic, Amsterdam, 2016)

    MATH  Google Scholar 

  12. L. Qi, H. Chen, Y. Chen, Tensor Eigenvalues and their Applications., vol. 39 (Springer: Singapore, 2018)

    Google Scholar 

  13. F. Chung, Spectral Graph Theory (American Mathematical Society, New York, 1997)

    MATH  Google Scholar 

  14. C. Berge, Graphs and Hypergraphs, in North-Holland Mathematical Library, vol. 45 (North-Holland, Amsterdam, 1976)

    Google Scholar 

  15. S. Bulo, M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, in Learning and Intelligent Optimization (Springer, New York, 2009), pp. 45–58

    Google Scholar 

  16. J. Cooper, A. Dutle, Spectra of uniform hypergraphs. Linear Algebra Appl. 436(9), 3268–3292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor. Graphs and Combinatorics 30(5), 1233–1248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Xie, A. Chang, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. Linear Algebra Appl. 439(8), 2195–2204 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Hu, L. Qi, J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl. 439(10), 2980–2998 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Hu, L. Qi, J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl. 469, 1–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Nikiforov, Analytic methods for uniform hypergraphs. Linear Algebra Appl. 457, 455–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Qi, J. Shao, Q. Wang, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. Linear Algebra Appl. 443, 215–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Lu, K. Plataniotis, A. Venetsanopoulos, Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (CRC, Boca Raton, 2013)

    Book  Google Scholar 

  24. L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. L. De Lathauwer, B. De Moor, J. Vandewalle, On the best rank-1 and rank-(r 1, r 2, ..., r n) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Zhang, G. Golub, Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Ni, L. Qi, M. Bai, Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35(1), 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Lim, Singular values and eigenvalues of tensors: a variational approach, in IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (IEEE, Piscataway, 2005), pp. 129–132

    Google Scholar 

  30. L. Qi, Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 439(1), 228–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Z. Chen, L. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process. J. Ind. Manag. Optim. 12(4), 1227–1247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Dow, P. Gibson, Permanents of d-dimensional matrices. Linear Algebra Appl. 90, 133–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  35. S. Hu, G. Li, L. Qi, Y. Song, Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming. J. Optim. Theory Appl. 158(3), 713–738 (2013)

    MathSciNet  MATH  Google Scholar 

  36. G. Li, L. Qi, G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Ng, L. Qi, G. Zhou, Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3), 1090–1099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Qi, G. Yu, E. Wu, Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imag. Sci. 3(3), 416–433 (2010)

    Article  MATH  Google Scholar 

  39. F. Bohnetwaldraff, D. Braun, O. Giraud, Tensor eigenvalues and entanglement of symmetric states. Phys. Rev. A 94(4), 042324 (2016)

    Google Scholar 

  40. G. Gaeta, E. Virga, Octupolar order in three dimensions. Eur. Phys. J. E 39(11), 113 (2016)

    Google Scholar 

  41. K. Kannike, Vacuum stability of a general scalar potential of a few fields. Eur. Phys. J. C 76(6), 324 (2016)

    Google Scholar 

  42. G. Golub, C. Van Loan, Matrix Computations, 4th edn. (Johns Hopkins University Press, Baltimore, 2013)

    MATH  Google Scholar 

  43. T. Kolda, J. Mayo, Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Qi, Y. Wang, E. Wu, D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221(1), 150–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Qi, H. Dai, D. Han, Conditions for strong ellipticity and M-eigenvalues. Front. Math. China 4(2), 349–364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. K. Chang, K. Pearson, T. Zhang, On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350(1), 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Cui, Y. Dai, J. Nie, All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35(4), 1582–1601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Kolda, J. Mayo, An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35(4), 1563–1581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. W. Ding, Y. Wei, Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(3), 1073–1099 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Chen, L. Han, L. Zhou, Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37(1), 290–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Chang, Y. Chen, L. Qi, Computing eigenvalues of large scale sparse tensors arising from a hypergraph. SIAM J. Sci. Comput. 38(6), A3618–A3643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Batselier, N. Wong, A QR Algorithm for Symmetric Tensors (2014). ArXiv preprint:1411.1926v1

    Google Scholar 

  53. Q. Yang, Y. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32(4), 1236–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31(5), 2517–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Zhang, L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19(5), 830–841 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Liu, C. Guo, W. Lin, A positivity preserving inverse iteration for finding the perron pair of an irreducible nonnegative third order tensor. SIAM J. Matrix Anal. Appl. 37(3), 911–932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Liu, C. Guo, W. Lin, Newton-Noda iteration for finding the Perron pair of a weakly irreducible nonnegative tensor. Numer. Math. 137(1), 63–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. K. Chang, L. Qi, T. Zhang, A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20(6), 891–912 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. W. Li, M. Ng, The perturbation bound for the spectral radius of a nonnegative tensor. Adv. Numer. Anal., Article ID 109525, 10 (2014)

    Google Scholar 

  60. W. Li, M. Ng, Some bounds for the spectral radius of nonnegative tensors. Numer. Math. 130(2), 315–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Chen, S. He, Z. Li, S. Zhang, On new classes of nonnegative symmetric tensors. SIAM J. Optim. 27, 292–318 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, H. Phan, Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  63. L. Grasedyck, D. Kressner, C. Tobler, A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Qi, P. Comon, L. Lim, Uniqueness of nonnegative tensor approximations. IEEE Trans. Inf. Theory 62(4), 2170–2183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Y. Miao, C. Li, Y. Wei, Z-singular value and Z-singular value inclusion sets for tensors. Jpn. J. Ind. Appl. Math. 36, 1055–1087 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. L. Eldén, B. Savas, A Newton-Grassmann method for computing the best multilinear rank-(r 1, r 2, r 3) approximation of a tensor. SIAM J. Matrix Anal. Appl. 31(2), 248–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Ishteva, P. Absil, S. Van Huffel, L. De Lathauwer, Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl. 32(1), 115–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. B. Savas, L. Lim, Quasi-Newton methods on Grassmannians and multilinear approximations of tensors. SIAM J. Sci. Comput. 32(6), 3352–3393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Nie, L. Wang, Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35(3), 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. da Silva, P. Comon, A. de Almeida, A finite algorithm to compute rank-1 tensor approximations. Signal Processing Lett. 23, 959–963 (2016)

    Article  Google Scholar 

  71. Y. Jiang, K. Xu, On the uniqueness and perturbation to the best rank-one approximation of a tensor. SIAM J. Matrix Anal. Appl. 36(2), 775–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Espig, A. Khachatryan, Convergence of Alternating Least Squares Optimisation for Rank-One Approximation to High Order Tensors (2015). ArXiv preprint:1503.05431

    Google Scholar 

  73. Y. Yang, Y. Feng, X. Huang, J. Suykens, Rank-1 tensor properties with applications to a class of tensor optimization poblems. SIAM J. Optim. 26(1), 171–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. K. Konakli, B. Sudret, Uncertainty quantification in high-dimensional spaces with low-rank tensor approximations, in 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering (2015)

    Google Scholar 

  75. P. Shah, N. Rao, G. Tang, Optimal Low-Rank Tensor Recovery from Separable Measurements: Four Contractions Suffice (2015). ArXiv preprint: 1505.04085

    Google Scholar 

  76. A. da Silva, P. Comon, A. de Almeida, Rank-1 Tensor Approximation Methods and Application to Deflation (2015). ArXiv preprint:1508.05273

    Google Scholar 

  77. A. Novikov, M. Trofimov, I. Oseledets, Exponential Machines (2016). ArXiv preprint:1605.03795

    Google Scholar 

  78. E. Stoudenmire, D. Schwab, Supervised learning with quantum-inspired tensor networks (2016). ArXiv preprint:1605.05775

    Google Scholar 

  79. E. Stoudenmire, D. Schwab, Supervised learning with tensor networks, in Advances in Neural Information Processing Systems, vol. 29 (Curran Associates Inc., New York, 2016), pp. 4799–4807

    Google Scholar 

  80. S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric. Front. Math. China 8(1), 19–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. E. Kofidis, P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  82. L. Qi, The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2), 430–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. L. Qi, F. Wang, Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(Serires A), 301–316 (2009)

    Google Scholar 

  84. S. Hu, Z. Huang, L. Qi, Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. Numer. Linear Algebra Appl. 20(6), 972–984 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. G. Ni, Y. Wang, On the best rank-1 approximation to higher-order symmetric tensors. Math. Comput. Model. 46(9), 1345–1352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. Y. Wang, L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14(6), 503–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. B. Jiang, S. Ma, S. Zhang, Tensor principal component analysis via convex optimization. Math. Program. 150(2), 423–457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. G. Dahl, J. Leinaas, J. Myrheim, E. Ovrum, A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420(2-3), 711–725 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  89. D. Han, H. Dai, L. Qi, Conditions for strong ellipticity of anisotropic elastic materials. J. Elast. 97(1), 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  90. C. Ling, J. Nie, L. Qi, Y. Ye, Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20(3), 1286–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. A. So, Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program. 129(2), 357–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. Y. Wang, L. Qi, X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 16(7), 589–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  93. X. Zhang, C. Ling, L. Qi, Semidefnite relaxation bounds for bi-quadratic optimization problems with quadratic constraints. J. Global Optim. 49(2), 293–311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  94. X. Zhang, C. Ling, L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33(3), 806–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. J. Knowles, E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elast. 5(3-4), 341–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  96. J. Knowles, E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63(63), 321–336 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  97. P. Rosakis, Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109(109), 1–37 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  98. Y. Wang, M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J. Elast. 44(1), 89–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  99. N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48(10), 696–702 (1935)

    MATH  Google Scholar 

  100. J. Nocedal, S. Wright, Numerical Optimization (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  101. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000)

    MATH  Google Scholar 

  102. A. Shimony, Degree of entanglementa. Ann. N. Y. Acad. Sci. 755(1), 675–679 (1995)

    Article  Google Scholar 

  103. T. Wei, P. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)

    Google Scholar 

  104. M. Hayashi, D. Markham, M. Murao, M. Owari, S. Virmani, The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50(12), 122104 (2009)

    Google Scholar 

  105. A. Defant, K. Floret, Tensor Norms and Operator Ideals, in North-Holland Mathematics Studies, vol. 176 (North-Holland Publishing Co., Amsterdam, 1993)

    MATH  Google Scholar 

  106. D. Markham, J. Anders, V. Vedral, M. Murao, A. Miyake, Survival of entanglement in thermal states. Europhys. Lett. 81(4), 40006 (2008)

    Google Scholar 

  107. Y. Nakata, D. Markham, M. Murao, Thermal robustness of multipartite entanglement of the one-dimensional spin-1∕2 XY model. Phys. Rev. A 79(4), 042313 (2009)

    Google Scholar 

  108. O. Gühne, G. Tóth, Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)

    Article  MathSciNet  Google Scholar 

  109. M. Hayashi, D. Markham, M. Murao, M. Owari, S. Virmani, Entanglement of multiparty-stabilizer, symmetric, and antisymmetric states. Phys. Rev. A 77(1), 012104 (2008)

    Google Scholar 

  110. D. Buhr, M. Carrington, T. Fugleberg, R. Kobes, G. Kunstatter, D. McGillis, C. Pugh, D. Ryckman, Geometrical entanglement of highly symmetric multipartite states and the Schmidt decomposition. J. Phys. A Math. Theor. 44(36), 365305 (2011)

    Google Scholar 

  111. C. González-Guillén, Multipartite maximally entangled states in symmetric scenarios. Phys. Rev. A 86(2), 022304 (2012)

    Google Scholar 

  112. R. Werner, A. Holevo, Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  113. D. Brandwood, A complex gradient operator and its application in adaptive array theory. IEE Proc. F: Commun. Radar and Signal Process. 130(1), 11–16 (1983)

    MathSciNet  Google Scholar 

  114. K. Kreutz-Delgado, The Complex Gradient Operator and the CR-Calculus (2009). ArXiv preprint:0906.4835

    Google Scholar 

  115. R. Remmert, Theory of Complex Functions (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  116. A. Van Den Bos, Complex gradient and Hessian, in IEEE Proceedings Vision, Image and Signal Processing, vol. 141 (1994), pp. 380–383

    Google Scholar 

  117. S. Hu, L. Qi, G. Zhang, Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93(1), 012304 (2016)

    Google Scholar 

  118. G. Ni, M. Bai, Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. 65(3), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Che, L. Qi, Y. Wei, G. Zhang, Geometric measures of entanglement in multipartite pure states via complex-valued neural networks. Neurocomputing 313, 25–38 (2018)

    Article  Google Scholar 

  120. X. Wang, M. Che, Y. Wei, Partial orthogonal rank-one decomposition of complex symmetric tensors based on the Takagi factorization. J. Comput. Appl. Math. 332, 56–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Che, M., Wei, Y. (2020). Introduction. In: Theory and Computation of Complex Tensors and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2059-4_1

Download citation

Publish with us

Policies and ethics