Skip to main content

Role of Autophagy in Cancer Cell Metabolism

Abstract

Autophagy is a complex process that plays a central role in maintaining cellular homeostasis by breaking down macromolecules and utilizing the metabolites as energy. This allows cells to maintain efficient ATP levels and promote cell survival by recycling macromolecules or dysfunctional organelles. Macromolecule degradation takes place in the lysosome and is identified as macroautophagy, microautophagy, or chaperone-mediated autophagy. Autophagy is also activated in response to cellular nutrient starvation as low glucose levels will cause cells to break down amino acids, such as glutamine. Glutaminolysis is able to support the tricarboxylic acid (TCA) cycle and when cells undergo severe starvation they can produce adequate ATP and NADPH levels. The underlying mechanism of autophagy is regulated by specific genes, primarily known as autophagy-related genes (ATGs). Although autophagy is critical for normal cell maintenance, cancer cells utilize autophagy to eliminate the demanding metabolic stress that is put on the cells allowing them to continue to grow and divide. Cancers with elevated autophagy activity are able to regulate important proliferative signaling pathways, including the PI3K/AKT/mTOR. Mutations in tumor suppressor genes, KRAS, Tp53, BRCA2, and PTEN have demonstrated the ability to activate autophagy, allowing for further uncontrolled growth of cancers. Autophagy has dual effects; normal cells can utilize it to promote autophagic cell death under stressful conditions, while cancer cells use it to induce chemo-resistance, promote cellular growth and division even under stressful metabolic conditions. Patients that present with elevated genes associated with autophagy could benefit from pharmacological inhibition of autophagy and targeted therapies to those genes. Here, we complied the role of autophagy regulation in cancer and cancer cell metabolism.

Keywords

  • Autophagy
  • Metabolism
  • Tumor microenvironment
  • Chemotherapy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 13 March 2020

    The following late corrections have been carried out in the updated version of chapters 6 and 7:

References

  • Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrogio C, Nadal E, Villanueva A, Gomez-Lopez G, Cash TP, Barbacid M, Santamaria D (2016) KRAS-driven lung adenocarcinoma: combined DDR1/Notch inhibition as an effective therapy. ESMO Open 1(5):e000076

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Amin AD, Peters TL, Li L, Rajan SS, Choudhari R, Puvvada SD, Schatz JH (2017) Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Cold Spring Harb Mol Case Stud 3(3):a001719

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park HW, Cantley LC, Thomas CJ, Vander Heiden MG (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8(10):839–847

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246

    CrossRef  CAS  PubMed  Google Scholar 

  • Arif M, Vedamurthy BM, Choudhari R, Ostwal YB, Mantelingu K, Kodaganur GS, Kundu TK (2010) Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem Biol 17(8):903–913

    CrossRef  CAS  PubMed  Google Scholar 

  • Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887

    CAS  PubMed  Google Scholar 

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ayllon V, O’Connor R (2007) PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 26(24):3451–3461

    CrossRef  CAS  PubMed  Google Scholar 

  • Bahrami F, Pourgholami MH, Mekkawy AH, Rufener L, Morris DL (2014) Monepantel induces autophagy in human ovarian cancer cells through disruption of the mTOR/p70S6K signalling pathway. Am J Cancer Res 4(5):558–571

    PubMed  PubMed Central  Google Scholar 

  • Bai H, Li H, Li W, Gui T, Yang J, Cao D, Shen K (2015) The PI3K/AKT/mTOR pathway is a potential predictor of distinct invasive and migratory capacities in human ovarian cancer cell lines. Oncotarget 6(28):25520–25532

    PubMed  PubMed Central  Google Scholar 

  • Ben-Josef E, Lawrence TS (2008) Chemoradiotherapy for unresectable pancreatic cancer. Int J Clin Oncol 13(2):121–126

    CrossRef  PubMed  Google Scholar 

  • Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA (2013) LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 162(5):621–630

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    CrossRef  PubMed  Google Scholar 

  • Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277(1):2–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Cai M, Hu Z, Liu J, Gao J, Liu C, Liu D, Tan M, Zhang D, Lin B (2014) Beclin 1 expression in ovarian tissues and its effects on ovarian cancer prognosis. Int J Mol Sci 15(4):5292–5303

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho CV, Choudhari R, Gadad SS (2018) Long noncoding RNAs and cancer, an overview. Steroids 133:93–95

    CrossRef  CAS  PubMed  Google Scholar 

  • Chang M (2012) Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 20(3):256–267

    CrossRef  CAS  Google Scholar 

  • Cheng CK, Fan QW, Weiss WA (2009) PI3K signaling in glioma—animal models and therapeutic challenges. Brain Pathol 19(1):112–120

    CrossRef  CAS  PubMed  Google Scholar 

  • Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23

    CrossRef  CAS  PubMed  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    CrossRef  CAS  PubMed  Google Scholar 

  • Choudhari R, Minero VG, Menotti M, Pulito R, Brakebusch C, Compagno M, Voena C, Ambrogio C, Chiarle R (2016) Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice. Blood 127(10):1297–1306

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhari R, Sedano MJ, Harrison AL, Subramani R, Lin KY, Ramos EI, Lakshmanaswamy R, Gadad SS (2019) Long noncoding RNAs in cancer: from discovery to therapeutic targets. Adv Clin Chem. https://doi.org/10.1016/bs.acc.2019.08.003

  • Colombo MI (2007) Autophagy: a pathogen driven process. IUBMB Life 59(4–5):238–242

    CrossRef  CAS  PubMed  Google Scholar 

  • Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R (2012) Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res 72(13):3337–3349

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa RJ, Valdes YR, Shepherd TG, DiMattia GE (2015) Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res 8:52

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104

    CrossRef  CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding LY, Chu M, Jiao YS, Hao Q, Xiao P, Li HH, Guo Q, Wang YD (2018) TFDP3 regulates the apoptosis and autophagy in breast cancer cell line MDA-MB-231. PLoS One 13(9):e0203833

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardy SR, Farnham PJ (2001) c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 276(51):48562–48571

    CrossRef  CAS  PubMed  Google Scholar 

  • Eskelinen EL (2019) Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 111:1–10

    CrossRef  CAS  PubMed  Google Scholar 

  • Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR, D’Amico TA, Demmy TL, Govindan R, Grannis FW Jr, Grant SC, Horn L, Jahan TM, Komaki R, Kong FM, Kris MG, Krug LM, Lackner RP, Lennes IT, Loo BW Jr, Martins R, Otterson GA, Patel JD, Pinder-Schenck MC, Pisters KM, Reckamp K, Riely GJ, Rohren E, Shapiro TA, Swanson SJ, Tauer K, Wood DE, Yang SC, Gregory K, Hughes M, National Comprehensive Cancer (2013) Non-small cell lung cancer, version 2.2013. J Natl Compr Cancer Netw 11(6):645–653; quiz 653

    CrossRef  Google Scholar 

  • Felippe Goncalves-de-Albuquerque C, Ribeiro Silva A, Ignacio da Silva C, Caire Castro-Faria-Neto H, Burth P (2017) Na/K pump and beyond: Na/K-ATPase as a modulator of apoptosis and autophagy. Molecules 22(4). https://doi.org/10.3390/molecules22040578

  • Friedberg JW (2017) How I treat double-hit lymphoma. Blood 130(5):590–596

    CrossRef  CAS  PubMed  Google Scholar 

  • Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol 20(6):355–362

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8(2):78–91

    CrossRef  CAS  PubMed  Google Scholar 

  • Gambacorti Passerini C, Farina F, Stasia A, Redaelli S, Ceccon M, Mologni L, Messa C, Guerra L, Giudici G, Sala E, Mussolin L, Deeren D, King MH, Steurer M, Ordemann R, Cohen AM, Grube M, Bernard L, Chiriano G, Antolini L, Piazza R (2014) Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst 106(2):djt378

    CrossRef  CAS  PubMed  Google Scholar 

  • Germic N, Frangez Z, Yousefi S, Simon HU (2019) Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ 26(4):715–727

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola RS, Jacks T, Rabinowitz JD, White E (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27(13):1447–1461

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamurcu Z, Delibasi N, Gecene S, Sener EF, Donmez-Altuntas H, Ozkul Y, Canatan H, Ozpolat B (2018) Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin beta1/ Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol 144(3):415–430

    CrossRef  CAS  PubMed  Google Scholar 

  • Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L (2018) Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 52(4):1057–1070

    CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43(1):67–93

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, Ngan HY, Pecorelli S, Beller U (2006) Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet 95(Suppl 1):S161–S192

    CrossRef  PubMed  Google Scholar 

  • Hinzman CP, Aljehane L, Brown-Clay JD, Kallakury B, Sonahara F, Goel A, Trevino J, Banerjee PP (2018) Aberrant expression of PDZ-binding kinase/T-LAK cell-originated protein kinase modulates the invasive ability of human pancreatic cancer cells via the stabilization of oncoprotein c-MYC. Carcinogenesis 39(12):1548–1559

    CrossRef  CAS  PubMed  Google Scholar 

  • Huang JJ, Zhu YJ, Lin TY, Jiang WQ, Huang HQ, Li ZM (2011) Beclin 1 expression predicts favorable clinical outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP. Hum Pathol 42(10):1459–1466

    CrossRef  CAS  PubMed  Google Scholar 

  • Iwadate R, Inoue J, Tsuda H, Takano M, Furuya K, Hirasawa A, Aoki D, Inazawa J (2014) High expression of SQSTM1/p62 protein is associated with poor prognosis in epithelial ovarian cancer. Acta Histochem Cytochem 47(6):295–301

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8(9):528–539

    CrossRef  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    CrossRef  PubMed  Google Scholar 

  • Joel M, Mughal AA, Grieg Z, Murrell W, Palmero S, Mikkelsen B, Fjerdingstad HB, Sandberg CJ, Behnan J, Glover JC, Langmoen IA, Stangeland B (2015) Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo. Mol Cancer 14:121

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832):1111–1116

    CrossRef  CAS  PubMed  Google Scholar 

  • Kaza N, Kohli L, Roth KA (2012) Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol 22(1):89–98

    CrossRef  CAS  PubMed  Google Scholar 

  • Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15(11):4829–4840

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Cho CH, Song HS (2017) Targeted therapy of ovarian cancer including immune check point inhibitor. Korean J Intern Med 32(5):798–804

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B (2008) Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 4(5):659–668

    CrossRef  CAS  PubMed  Google Scholar 

  • Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25(5):1037–1043

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Klarer AC, O’Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, Clem B, Chesney J, Telang S (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2(1):2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734

    CrossRef  CAS  PubMed  Google Scholar 

  • Konecny G, Pauletti G, Pegram M, Untch M, Dandekar S, Aguilar Z, Wilson C, Rong HM, Bauerfeind I, Felber M, Wang HJ, Beryt M, Seshadri R, Hepp H, Slamon DJ (2003) Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 95(2):142–153

    CrossRef  CAS  PubMed  Google Scholar 

  • Kong D, Ma S, Liang B, Yi H, Zhao Y, Xin R, Cui L, Jia L, Liu X, Liu X (2012) The different regulatory effects of p53 status on multidrug resistance are determined by autophagy in ovarian cancer cells. Biomed Pharmacother 66(4):271–278

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105(9):3374–3379

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Koh D, Na H, Ka NL, Kim S, Kim HJ, Hong S, Shin YK, Seong JK, Lee MO (2018) MTA1 is a novel regulator of autophagy that induces tamoxifen resistance in breast cancer cells. Autophagy 14(5):812–824

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS (2017) Autophagy and multidrug resistance in cancer. Chin J Cancer 36(1):52

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363(9414):1049–1057

    CrossRef  CAS  PubMed  Google Scholar 

  • Li Y, Zhou X, Zhang Y, Yang J, Xu Y, Zhao Y, Wang X (2019) CUL4B regulates autophagy via JNK signaling in diffuse large B-cell lymphoma. Cell Cycle 18(4):379–394

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Kuang W, Wu B, Xie C, Liu C, Tu Z (2017) IL-12 induces autophagy in human breast cancer cells through AMPK and the PI3K/Akt pathway. Mol Med Rep 16(4):4113–4118

    CrossRef  CAS  PubMed  Google Scholar 

  • Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q (2019) The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res 38(1):218

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Sun L, Yang J, Liu T, Yang Y, Kim SM, Ou X, Wang Y, Sun L, Zaidi M, New MI, Yuen T, Guo Q (2018) FSIP1 regulates autophagy in breast cancer. Proc Natl Acad Sci U S A 115(51):13075–13080

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22(2):165–178

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohinai Z, Klikovits T, Moldvay J, Ostoros G, Raso E, Timar J, Fabian K, Kovalszky I, Kenessey I, Aigner C, Renyi-Vamos F, Klepetko W, Dome B, Hegedus B (2017) KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis. Sci Rep 7:39721

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozy F, Karantza V (2012) Autophagy and cancer cell metabolism. Semin Cell Dev Biol 23(4):395–401

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118(12):3917–3929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42(6):719–730

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R, Li X, Liu H, Jiang R, Yang M, Zhang M, Wang Y, Zhao Y, Li H (2019a) GATA6-upregulating autophagy promotes TKI resistance in nonsmall cell lung cancer. Cancer Biol Ther 20(9):1206–1212

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Li Y, Wang X, Wu H, Qi G, Li R, Yang N, Gao M, Yan S, Yuan C, Kong B (2019b) PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis 10(3):166

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Maruwge W, Strambi A, D’Arcy P, Pellegrini P, Kis L, de Milito A, Lain S, Brodin B (2014) SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis 5:e1483

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    CrossRef  CAS  PubMed  Google Scholar 

  • Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, Mathews CK, Shewach DS, Nikiforov MA (2008) Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7(15):2392–2400

    CrossRef  CAS  PubMed  Google Scholar 

  • Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN, Bucki R, Wlodarski P, Wasik MA (2007) Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26(38):5606–5614

    CrossRef  CAS  PubMed  Google Scholar 

  • McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, Zhou W, Choi HG, Smith SL, Dowell L, Ulkus LE, Kuhlmann G, Greninger P, Christensen JG, Haber DA, Settleman J (2008) Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68(9):3389–3395

    CrossRef  CAS  PubMed  Google Scholar 

  • Menotti M, Ambrogio C, Cheong TC, Pighi C, Mota I, Cassel SH, Compagno M, Wang Q, Dall’Olio R, Minero VG, Poggio T, Sharma GG, Patrucco E, Mastini C, Choudhari R, Pich A, Zamo A, Piva R, Giliani S, Mologni L, Collings CK, Kadoch C, Gambacorti-Passerini C, Notarangelo LD, Anton IM, Voena C, Chiarle R (2019) Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med 25(1):130–140

    CrossRef  CAS  PubMed  Google Scholar 

  • Mitou G, Frentzel J, Desquesnes A, Le Gonidec S, AlSaati T, Beau I, Lamant L, Meggetto F, Espinos E, Codogno P, Brousset P, Giuriato S (2015) Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma. Oncotarget 6(30):30149–30164

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    CrossRef  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk BJ, Coleman RL (2009) Changing the paradigm in the treatment of platinum-sensitive recurrent ovarian cancer: from platinum doublets to nonplatinum doublets and adding antiangiogenesis compounds. Int J Gynecol Cancer 19(Suppl 2):S63–S67

    CrossRef  PubMed  Google Scholar 

  • Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G, Liu X, Su L (2019) Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis 4(9–10):798–811

    CrossRef  CAS  Google Scholar 

  • Murakami T, Nishiyama T, Shirotani T, Shinohara Y, Kan M, Ishii K, Kanai F, Nakazuru S, Ebina Y (1992) Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem 267(13):9300–9306

    CAS  PubMed  Google Scholar 

  • Nagelkerke A, Sieuwerts AM, Bussink J, Sweep FC, Look MP, Foekens JA, Martens JW, Span PN (2014) LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr Relat Cancer 21(1):101–112

    CrossRef  CAS  PubMed  Google Scholar 

  • Nicotra G, Mercalli F, Peracchio C, Castino R, Follo C, Valente G, Isidoro C (2010) Autophagy-active beclin-1 correlates with favourable clinical outcome in non-Hodgkin lymphomas. Mod Pathol 23(7):937–950

    CrossRef  CAS  PubMed  Google Scholar 

  • Oh S, Xiaofei E, Ni D, Pirooz SD, Lee JY, Lee D, Zhao Z, Lee S, Lee H, Ku B, Kowalik T, Martin SE, Oh BH, Jung JU, Liang C (2011) Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis. Cell Death Differ 18(3):452–464

    CrossRef  CAS  PubMed  Google Scholar 

  • Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800

    CrossRef  CAS  PubMed  Google Scholar 

  • Pandareesh MD, Kandikattu HK, Razack S, Amruta N, Choudhari R, Vikram A, Doddapattar P (2018) Nutrition and nutraceuticals in neuroinflammatory and brain metabolic stress: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 17(9):680–688

    CrossRef  CAS  PubMed  Google Scholar 

  • Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, Settleman J, Stephanopoulos G, Dyson NJ, Zoncu R, Ramaswamy S, Haas W, Bardeesy N (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524(7565):361–365

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112(3):389–403

    CrossRef  CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946

    CrossRef  CAS  PubMed  Google Scholar 

  • Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM (2018) Autophagy and inflammation in chronic respiratory disease. Autophagy 14(2):221–232

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ren YA, Mullany LK, Liu Z, Herron AJ, Wong KK, Richards JS (2016) Mutant p53 promotes epithelial ovarian cancer by regulating tumor differentiation, metastasis, and responsiveness to steroid hormones. Cancer Res 76(8):2206–2218

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikiishi H (2010) Possible role of autophagy in the treatment of pancreatic cancer with histone deacetylase inhibitors. Cancers (Basel) 2(4):2026–2043

    CrossRef  CAS  Google Scholar 

  • Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53(4):521–533

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, Adams PD, Anderson KI, Gottlieb E, Sansom OJ, Ryan KM (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504(7479):296–300

    CrossRef  CAS  PubMed  Google Scholar 

  • Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371(11):1039–1049

    CrossRef  CAS  PubMed  Google Scholar 

  • Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1):131–139

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Samaddar JS, Gaddy VT, Duplantier J, Thandavan SP, Shah M, Smith MJ, Browning D, Rawson J, Smith SB, Barrett JT, Schoenlein PV (2008) A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 7(9):2977–2987

    CrossRef  PubMed  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56

    CrossRef  CAS  PubMed  Google Scholar 

  • Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK (2009) Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol 29(18):5115–5127

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Li DD, Wang LL, Deng R, Zhu XF (2008) Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 4(8):1067–1068

    CrossRef  CAS  PubMed  Google Scholar 

  • Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, Chen SJ, Chen Y, Zhao WL (2012) Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 3:e275

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    CrossRef  PubMed  Google Scholar 

  • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3(11):1272–1285

    CrossRef  CAS  PubMed  Google Scholar 

  • Sun M, Gadad SS, Kim DS, Kraus WL (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59(4):698–711

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Huang Z, Sheng W, Xu MD (2018a) Emerging roles of long non-coding RNAs in tumor metabolism. J Hematol Oncol 11(1):106

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun WL, Wang L, Luo J, Zhu HW, Cai ZW (2018b) Ambra1 modulates the sensitivity of breast cancer cells to epirubicin by regulating autophagy via ATG12. Cancer Sci 109(10):3129–3138

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, Masui K, Gini B, Yang H, Hosoda K, Sasaki R, Mischel PS, Kohmura E (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125(4):1591–1602

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349(2):275–280

    CrossRef  CAS  PubMed  Google Scholar 

  • Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL (2018) Ovarian cancer statistics, 2018. CA Cancer J Clin 68(4):284–296

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Trenti A, Grumati P, Cusinato F, Orso G, Bonaldo P, Trevisi L (2014) Cardiac glycoside ouabain induces autophagic cell death in non-small cell lung cancer cells via a JNK-dependent decrease of Bcl-2. Biochem Pharmacol 89(2):197–209

    CrossRef  CAS  PubMed  Google Scholar 

  • True O, Matthias P (2012) Interplay between histone deacetylases and autophagy—from cancer therapy to neurodegeneration. Immunol Cell Biol 90(1):78–84

    CrossRef  CAS  PubMed  Google Scholar 

  • Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff D (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22(8):1430–1438

    CrossRef  CAS  PubMed  Google Scholar 

  • Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669

    CrossRef  CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research Network (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, Zhu Z, Zhang J (2017a) PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 7(1):2886

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zhang J, Huang Y, Ji S, Shao G, Feng S, Chen D, Zhao K, Wang Z, Wu A (2017b) Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med Sci Monit 23:3904–3912

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9–15

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J, Chen XP (2019) Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res 38(1):298

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams T, Forsberg LJ, Viollet B, Brenman JE (2009) Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy 5(8):1155–1165

    CrossRef  CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB, Lloyd MC, Sloane BF, Gillies RJ (2012) Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72(16):3938–3947

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhang X, Li Y, Lu S, Lu S, Li J, Wang Y, Tian X, Wei JJ, Shao C, Liu Z (2016) Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/ JNK activation. Tumour Biol 37(7):8721–8729

    CrossRef  CAS  PubMed  Google Scholar 

  • Yan J, Zhang J, Zhang X, Li X, Li L, Li Z, Chen R, Zhang L, Wu J, Wang X, Sun Z, Fu X, Chang Y, Nan F, Yu H, Wu X, Feng X, Li W, Zhang M (2018) AEG-1 is involved in hypoxia-induced autophagy and decreases chemosensitivity in T-cell lymphoma. Mol Med 24(1):35

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011a) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Imamura Y, Jenkins RW, Canadas I, Kitajima S, Aref A, Brannon A, Oki E, Castoreno A, Zhu Z, Thai T, Reibel J, Qian Z, Ogino S, Wong KK, Baba H, Kimmelman AC, Pasca Di Magliano M, Barbie DA (2016) Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation. Cancer Immunol Res 4(6):520–530

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4(8):905–913

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011b) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H, Qu D, Liu C, Ying T, Lv J, Jin S, Xu H (2015) Chemoresistance is associated with Beclin-1 and PTEN expression in epithelial ovarian cancers. Oncol Lett 9(4):1759–1763

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA (2016) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 30(4):355–385

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J, Wei B (2016) Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 7(50):83476–83487

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ma T, Brozick J, Babalola K, Budiu R, Tseng G, Vlad AM (2016) Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer. Oncogene 35(38):5010–5020

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang Y, Zhang P, Chao Z, Xia F, Jiang C, Zhang X, Jiang Z, Liu H (2014) Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 5(3–4):100–112

    PubMed  PubMed Central  Google Scholar 

  • Zi D, Zhou ZW, Yang YJ, Huang L, Zhou ZL, He SM, He ZX, Zhou SF (2015) Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/Akt/mTOR signaling pathway in human ovarian cancer cells. Int J Mol Sci 16(11):27228–27251

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S.S.G. is supported by a first-time faculty recruitment award from the Cancer Prevention and Research Institute of Texas (CPRIT; RR170020).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedroza, D.A. et al. (2020). Role of Autophagy in Cancer Cell Metabolism. In: Kumar, D. (eds) Cancer Cell Metabolism: A Potential Target for Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1991-8_6

Download citation