Skip to main content

Probabilistic Graphical Models

  • Chapter
  • First Online:
Machine Learning
  • 14k Accesses

Abstract

The most important problem in machine learning is to estimate and infer the value of unknown variables (e.g., class label) based on the observed evidence (e.g., training samples). Probabilistic models provide a framework that considers learning problems as computing the probability distributions of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrieu C, Freitas ND, Doucet A, Jordan MI (2003) An introduction to MCMC for machine learning. Mach Learn 50(1–2):5–43

    Article  Google Scholar 

  • Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84

    Article  Google Scholar 

  • Blei DM, Ng A, Jordan MI (2003) Latent Dirichlet allocation. J Artif Intell Res 3:993–1022

    MATH  Google Scholar 

  • Buntine W (1994) Operations for learning with graphical models. J Artif Intell Res 2:159–225

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Patt Anal Mach Intell 6(6):721–741

    Article  Google Scholar 

  • Ghahramani Z, Griffiths TL (2006) Infinite latent feature models and the Indian buffet process. In: Weiss Y, Scholkopf B, Platt JC (eds) Advances in Neural Information Processing Systems 18 (NIPS). MIT Press, Cambridge, MA, pp 475–482

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain monte carlo in practice. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Gonzalez JE, Low Y, Guestrin C (2009) Residual splash for optimally parallelizing belief propagation. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), Clearwater Beach, FL, pp 177–184

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrica 57(1):97–109

    Article  MathSciNet  Google Scholar 

  • Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1):177–196

    Article  Google Scholar 

  • Jordan MI (ed) (1998) Learning in graphical models. Kluwer, Dordrecht, Netherlands

    Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Kschischang FR, Frey BJ, Loeliger H-A (2001) Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory 47(2):498–519

    Article  MathSciNet  Google Scholar 

  • Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (ICML), Williamstown, MA, pp 282–289

    Google Scholar 

  • Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J R Stat Soc -Ser B 50(2):157–224

    MathSciNet  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Google Scholar 

  • Mooij JM, Kappen HJ (2007) Sufficient conditions for convergence of the sum-product algorithm. IEEE Trans Inf Theory 53(12):4422–4437

    Article  MathSciNet  Google Scholar 

  • Murphy KP, Weiss Y, Jordan MI (1999) Loopy belief propagation for approximate inference: an empirical study. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI), Stockholm, Sweden, pp 467–475

    Google Scholar 

  • Neal RM (1993) Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto

    Google Scholar 

  • Pearl J (1982) Asymptotic properties of minimax trees and game-searching procedures. In: Proceedings of the 2nd National Conference on Artificial Intelligence (AAAI), Pittsburgh, PA

    Google Scholar 

  • Pearl J (1986) Fusion, propagation and structuring in belief networks. Artif Intell 29(3):241–288

    Google Scholar 

  • Pearl J (1987) Evidential reasoning using stochastic simulation of causal models. Artif Intell 32(2):245–258

    Article  MathSciNet  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmanns, San Francisco, CA

    MATH  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov model and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Sutton C, McCallum A (2012) An introduction to conditional random fields. Found Trends Mach Learn 4(4):267–373

    Article  Google Scholar 

  • Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1566–1581

    Article  MathSciNet  Google Scholar 

  • Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and variational inference. Found Trends Mach Learn 1(1–2):1–305

    Article  Google Scholar 

  • Weiss Y (2000) Correctness of local probability propagation in graphical models with loops. Neural Comput 12(1):1–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, ZH. (2021). Probabilistic Graphical Models. In: Machine Learning. Springer, Singapore. https://doi.org/10.1007/978-981-15-1967-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1967-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1966-6

  • Online ISBN: 978-981-15-1967-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics