Skip to main content

Dimensionality Reduction and Metric Learning

  • Chapter
  • First Online:
Machine Learning

Abstract

k-Nearest Neighbor (kNN) is a commonly used supervised learning method with a simple mechanism: given a testing sample, find the k nearest training samples based on some distance metric, and then use these k ‘‘neighbors” to make predictions. Typically, for classification problems, voting can be used to predict the testing sample as the most frequent class label in the k neighbors; for regression problems, averaging can be used to predict the testing sample as the average of the k real-valued outputs. Besides, the samples can be weighted by the distances in the way that a closer sample is assigned a higher weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aha D (ed) (1997) Lazy learning. Kluwer, Norwell

    MATH  Google Scholar 

  • Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  • Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  • Cox TF, Cox MA (2001) Multidimensional scaling. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning (ICML), Corvalis, OR, pp 209–216

    Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  • Friedman JH, Kohavi R, Yun Y (1996) Lazy decision trees. In: Proceedings of the 13th national conference on artificial intelligence (AAAI), Portland, OR, pp 717–724

    Google Scholar 

  • Frome A, Singer Y, Malik J (2007) Image retrieval and classification using local distance functions. In: Scholkopf B, Platt JC, Hoffman T (eds) Advances in neural information processing systems 19 (NIPS). MIT Press, Cambridge, pp 417–424

    Google Scholar 

  • Geng X, Zhan D-C, Zhou Z-H (2005) Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans Syst Man Cybern-Part B: Cybern 35(6):1098–1107

    Google Scholar 

  • Goldberger J, Hinton GE, Roweis ST, Salakhutdinov RR (2005) Neighbourhood components analysis. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17 (NIPS). MIT Press, Cambridge, pp 513–520

    Google Scholar 

  • Harden DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  Google Scholar 

  • He X, Niyogi P (2004) Locality preserving projections. In: Thrun S, Saul LK, Scholkopf B (eds) Advances in neural information processing systems 16 (NIPS). MIT Press, Cambridge, pp 153–160

    Google Scholar 

  • Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3–4):321–377

    Article  Google Scholar 

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  • Wagstaff K, Cardie C, Rogers S, Schrödl S (2001) Constrained \(k\)-means clustering with background knowledge. In: Proceedings of the 18th international conference on machine learning (ICML), Williamstown, MA, pp 577–584

    Google Scholar 

  • Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10:207–244

    MATH  Google Scholar 

  • Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning, with application to clustering with side-information. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15 (NIPS). MIT Press, Cambridge, MA, pp 505–512

    Google Scholar 

  • Yan S, Xu D, Zhang B, Zhang H-J (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Google Scholar 

  • Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  • Yang L, Jin R, Sukthankar R, Liu Y (2006) An efficient algorithm for local distance metric learning. In: Proceedings of the 21st national conference on artificial intelligence (AAAI), Boston, MA, pp 543–548

    Google Scholar 

  • Ye J, Janardan R, Li Q (2005) Two-dimensional linear discriminant analysis. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17 (NIPS). MIT Press, Cambridge, pp 1569–1576

    Google Scholar 

  • Zhan D-C, Li Y-F, Zhou Z-H (2009) Learning instance specific distances using metric propagation. In: Proceedings of the 26th international conference on machine learning (ICML), Montreal, Canada, pp 1225–1232

    Google Scholar 

  • Zhang D, Zhou Z-H (2005) (2D)\(^2\)PCA: 2-directional 2-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1–3):224–231

    Article  Google Scholar 

  • Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, ZH. (2021). Dimensionality Reduction and Metric Learning. In: Machine Learning. Springer, Singapore. https://doi.org/10.1007/978-981-15-1967-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1967-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1966-6

  • Online ISBN: 978-981-15-1967-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics