Skip to main content

Context-Dependent Representation of Knowledge Graphs

  • Conference paper
  • First Online:
Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding (CCKS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1134))

Included in the following conference series:

  • 1232 Accesses

Abstract

Recently, there is a growing interest of leveraging graph’s structural information for knowledge representation. However, they fail to capture global connectivity patterns in knowledge graphs or depict unique structural properties of various graph context. In this paper, we propose a novel representation framework, Context-dependent Representation of Knowledge Graphs (CRKG), to utilize the diversity of graph’s structural information for knowledge representation. We introduce triplet context to effectively capture semantic information from two types of graph structures around a triple. One is K-degree neighborhoods of a source entity in the target triple, which captures global connectivity patterns of entities. The other is multiple relation paths between the entity pair in the target triple, reflecting rich inference patterns between entities. Considering the unique characteristics of two kinds of triplet context, we design distinct embedding strategies to preserve their connectivity pattern diversities. Experimental results on three challenging datasets show that CRKG has significant improvements compared with baselines on link prediction task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW, pp. 37–48 (2013)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250 (2008)

    Google Scholar 

  4. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning representations for open-text semantic parsing. In: AISTATS, pp. 127–135 (2012)

    Google Scholar 

  5. Bordes, A., Usunier, N., Garciaduran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  6. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI, pp. 301–306 (2011)

    Google Scholar 

  7. Bordes, A., et al.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)

    Google Scholar 

  9. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)

    Google Scholar 

  10. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, pp. 1306–1313 (2010)

    Google Scholar 

  11. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018)

    Google Scholar 

  12. Feng, J., Huang, M., Yang, Y., Zhu, X.: GAKE: graph aware knowledge embedding. In: COLING, pp. 641–651 (2016)

    Google Scholar 

  13. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  14. Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically smooth knowledge graph embedding. In: ACL, pp. 84–94 (2015)

    Google Scholar 

  15. Han, X., Liu, Z., Sun, M.: Neural knowledge acquisition via mutual attention between knowledge graph and text. In: AAAI (2018)

    Google Scholar 

  16. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP, pp. 705–714 (2015)

    Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  18. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  19. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL, pp. 327–333 (2018)

    Google Scholar 

  20. Nickel, M., Tresp, V., Kriegel, H.: Knowledge graph embedding by translating on hyperplanes. In: WWW, pp. 271–280 (2012)

    Google Scholar 

  21. Perozzi, B., Alrfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  22. Singhal, A.: Introducing the knowledge graph: things, not strings. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/. Accessed 28 Aug 2018

  23. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

    Google Scholar 

  24. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  25. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp. 1225–1234 (2016)

    Google Scholar 

  26. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: ICAI, pp. 1859–1865 (2015)

    Google Scholar 

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Factorizing YAGO: scalable machine learning for linked data. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  28. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embedding. In: EMNLP, pp. 1591–1601 (2014)

    Google Scholar 

  29. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  30. Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hierarchical types. In: AAAI, pp. 2965–2971 (2016)

    Google Scholar 

  31. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binling Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, B., Sun, S. (2019). Context-Dependent Representation of Knowledge Graphs. In: Zhu, X., Qin, B., Zhu, X., Liu, M., Qian, L. (eds) Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding. CCKS 2019. Communications in Computer and Information Science, vol 1134. Springer, Singapore. https://doi.org/10.1007/978-981-15-1956-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1956-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1955-0

  • Online ISBN: 978-981-15-1956-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics