Skip to main content

Nutrient Cycling at Higher Altitudes

Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Altitude in simple terms is the height above the mean sea level, but it is not as simple as it sounds. The altitude has a significant influence on properties and processes of ecosystem. Altitude determines the biomes by determining the temperature and precipitation imposing an impact on the vegetation. As altitude increases, there is decrease in temperature leading to more diverse and sparse vegetation as well as at higher altitudes, the soils are frozen most of the time. The changing climatic conditions influence the plant and soil nutrient cycles along the increasing gradient. Nutrient cycling at higher altitude differs significantly from those in lower altitudes because of the changing climatic conditions, precipitation patterns, vegetation, and parent rock type. The key nutrients C, N, P, and K of soils at higher altitude differ significantly from those that are present on plains. There is a steady increase in soil organic C and microbial biomass. The total soil N and the microbial biomass N also increase. This implies that there exists a significant difference in the microbiome responsible for the turnover of nutrient cycling events. A comprehensive knowledge on higher altitude nutrient dynamics will bolster our understanding on how the nutrient cycling occurs, difference in the microbiome, organic carbon deposition, and microbial activity in permanently frozen soils.

Keywords

  • Soil nutrients
  • High altitude regions
  • Nutrient cycling
  • Microbiome
  • Microbial diversity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angel RR, Conrad R, Dvorsky M, Kopecky M, Kotilinek M, Hiiesalu I, Schweingruber FH, Doležal JX (2016) The root-associated microbial community of the world’s highest growing vascular plants. Microb Ecol 72:394–406

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bader MY, Rietkerk MG, Bregt AK (2007) Vegetation structure and temperature regimes of tropical alpine treelines. Arct Antarct Alp Res 39(3):353–364

    CrossRef  Google Scholar 

  • Berdanier AB (2010) Global treeline position. Nat Educ Knowl 3(10):11

    Google Scholar 

  • Bliss LC (2000) Arctic tundra and polar desert biome. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, Cambridge, pp 1–40

    Google Scholar 

  • Bolstad PV, Vose JM, McNulty SG (2001) Forest productivity, leaf area, and terrain in southern Appalachian deciduous forests. For Sci 47(3):419–427

    Google Scholar 

  • Carnelli AL, Theurillat J, Thinon M, Vadi G, Talon B (2004) Past uppermost tree limit in the Central European Alps (Switzerland) based on soil and soil charcoal. Holocene 14(3):393–405

    CrossRef  Google Scholar 

  • Charan G, Bharti VK, Jadhav SE, Kumar S, Acharya S, Kumar P, Gogoi D, Srivastava RB (2013) Altitudinal variations in soil physico-chemical properties at cold desert high altitude. J Soil Sci Plant Nutr 13(2):267–277

    Google Scholar 

  • Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95(5):1084–1097

    CrossRef  Google Scholar 

  • Dangwal LR, Tajinder S, Amandeep S, Antima S (2012) Plant diversity assessment in relation to disturbances in subtropical Chir pine forest of the western Himalaya of District Rajouri, J&K, India. Int J Plant Anim Environ Sci 2(2):206–213

    Google Scholar 

  • Dar MA, Rasool R, Maqbool M, Wani JA, Bhat MY, Ramzan S (2017) Depth wise distribution of primary nutrients in pear orchard soils of Kashmir, India. Int J Curr Microbiol Appl Sci 6(6):2526–2539

    CrossRef  CAS  Google Scholar 

  • Dwivedi SK, Sharma VK, Bharadwaj V (2005) Status of available nutrients in soil of cold arid region of Ladakh. J Indian Soc Soil Sci 53:421–423

    Google Scholar 

  • Dyrset N, Bentzen G, Arnesen T, Larsen HW (1984) A marine, psychrophilic bacterium of the bacteroidaceae type. Arch Microbiol 139:415–420

    CrossRef  CAS  Google Scholar 

  • Elliott-Fisk DL (2000) The taiga and boreal forest. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, Cambridge, pp 41–74

    Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:1–28

    CrossRef  CAS  Google Scholar 

  • Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55(5):564–577

    CrossRef  CAS  PubMed  Google Scholar 

  • Gerdol R, Marchesini R, Iacumin P (2017) Bedrock geology interacts with altitude in affecting leaf growth and foliar nutrient status of mountain vascular plants. J Plant Ecol 10:839–850

    Google Scholar 

  • Ghimire NP, Rai SK, Jha PK, Caravello GU (2013) Chlorophycean algae in Khumbu Himalaya region of Nepal, including four new records. World J Sci Technol Res 1(7):144–150

    Google Scholar 

  • Gounot A (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197

    CrossRef  CAS  PubMed  Google Scholar 

  • He X, Hou E, Liu Y, Wen D (2016) Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci Rep 6(24261):1–9

    Google Scholar 

  • Jochner M, Bugmann H, Notzli M, Bigler C (2017) Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps. Ecol Evol 7(19):7937–7953

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Johannessen C (1958) Higher phosphate values in soils under trees than in soils under grass. Ecology 39:373–374

    CrossRef  CAS  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106(4):507–515

    CrossRef  PubMed  Google Scholar 

  • Joshi D, Kumar S, Suyal DC, Goel R (2017) The microbiome of the Himalayan Ecosystem. In: Kalia VC et al (eds) Mining of microbial wealth and metagenomics. Springer, Singapore, pp 101–116

    CrossRef  Google Scholar 

  • Kessler M, Toivonen JM, Sylvester SP, Kluge J, Hertel D (2014) Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci 5(194):1–12

    Google Scholar 

  • Koerselman W, Meuleman AF (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    CrossRef  Google Scholar 

  • Korner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732

    CrossRef  Google Scholar 

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):1–15

    Google Scholar 

  • Ley RE, Lipson DA, Schmidt SK (2000) Microbial biomass levels in barren and vegetated high altitude Talus soils. Soil Sci Soc Am J 65:111–117

    CrossRef  Google Scholar 

  • Liang P, Wang X, Sun H, Fan Y, Wu Y, Lin X, Chang J (2019) Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Sci Rep 9(1):1–9

    CrossRef  CAS  Google Scholar 

  • Loranger H, Zotz G, Bader MY (2016) Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions. AoB Plants 8:1–14

    CrossRef  Google Scholar 

  • Macek P, Klimes L, Adamec L, Dolezal J, Chlumska Z, de Bello F, Dvorsky M, Rehakova K (2012) Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Arctic Antarct Alpine Res 44:62–66

    CrossRef  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    CrossRef  PubMed  Google Scholar 

  • Miehe G, Miehe S, Vogel JT, Co S, La D (2007) Highest treeline in the northern Hemisphere found in southern Tibet. Mount Res Dev 27(2):169–173

    CrossRef  Google Scholar 

  • Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Noroozi J, Korner C (2018) A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alpine Bot 128(1):1–11

    CrossRef  Google Scholar 

  • Northcott ML, Gooseff MN, Barrett JE, Zeglin LH, Takacs-Vesbach CD, Humphrey J (2009) Hydrologic characteristics of lake and stream-side riparian margins in the McMurdo Dry Valleys, Antarctica. Hydrol Process 23:1255–1267

    CrossRef  CAS  Google Scholar 

  • Pauli H (2016) Climate change impacts on high-altitude ecosystems. Mt Res Dev 36(1)

    Google Scholar 

  • Premalatha K, Soni R, Khan M, Marla SS, Goel R (2009) Exploration of Csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr Microbiol 58:343–348

    CrossRef  CAS  PubMed  Google Scholar 

  • Qasba S, Masoodi TH, Bhat SJA, Paray PA, Bhat A, Khanday M (2017) Effect of altitude and aspect on soil physico-chemical characteristics in Shankaracharya Reserved Forest. Int J Pure Appl Biosci 5(1):585–596

    CrossRef  Google Scholar 

  • Saeed S, Barozai MYK, Ahmad A, Shah SH (2014) Impact of altitude on soil physical and chemical properties in Sra Ghurgai (Takatu mountain range) Quetta, Balochistan. Int J Sci Eng Res 5(3):730–735

    Google Scholar 

  • Sawyer D, Kinraide T (1980) The forest vegetation at higher altitudes in the Chiricahua Mountains, Arizona. Am Midland Nat 104(2):224–241

    CrossRef  Google Scholar 

  • Schiermeier Q (2008) ‘Rain-making’ bacteria found around the world. Nature 2008:632. https://doi.org/10.1038/news.2008.632

  • Sevgi O, Tecimen HB (2009) Physical, chemical and pedogenetical properties of soil in relation with altitude at Kazdagi upland black pine forest. J Environ Biol 30(3):349–354

    CAS  PubMed  Google Scholar 

  • Siles JA, Cajthaml T, Minerbi S, Margesin R (2016) Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 92(3):1–12

    CrossRef  CAS  Google Scholar 

  • Singh AK, Parsad A, Singh B (1986) Availability of phosphorus and potassium and its relationship with physico-chemical properties of some forest soils of Pali-range (Shahdol, M.P.). Indian Forestry 112(12):1094–1104

    Google Scholar 

  • Singh C, Soni R, Jain S, Roy S, Goel R (2010) Diversification of nitrogen fixing bacterial community using nifH gene as a biomarker in different geographical soils of Western Indian Himalayas. J Environ Biol 31:553–556

    CAS  PubMed  Google Scholar 

  • Singh J, Upreti DK, Dubey DK (2016) Effect of elevation gradient on the distribution of lichens and mosses of central Himalayan region, Uttarakhand, India. G- J Environ Sci Technol 3(5):44–47

    Google Scholar 

  • Soethe N, Lehmann J, Engels C (2008) Nutrient availability at different altitudes in a tropical montane forest in Ecuador. J Trop Ecol 24(4):397–406

    CrossRef  Google Scholar 

  • Soni R, Goel R (2010) Triphasic approach for assessment of bacterial population in different soil systems. Ekologija 56:94–98

    CrossRef  CAS  Google Scholar 

  • Soni R, Goel R (2011) nifH homologous from soil metagenome. Ekologija 57:87–95 

    CrossRef  CAS  Google Scholar 

  • Soni R, Saluja B, Goel R (2010) Bacterial community analysis using temporal gradient gel electrophoresis of 16 S rDNA PCR products of soil metagenomes. Ekologija 56(3–4):94–98

    CrossRef  CAS  Google Scholar 

  • Soni R, Suyal DC, Sai S, Goel R (2016) Exploration of nifH gene through soil metagenomes of the western Indian Himalayas. 3 Biotech 6(1):25

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2013) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550

    CrossRef  PubMed  CAS  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature Diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68:543–550

    CrossRef  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015a) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris L.) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70:305–313 

    CrossRef  CAS  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015b) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotech 5(4):433–441

    CrossRef  PubMed  Google Scholar 

  • Suyal DC, Kumar S, Yadav A, Shouche Y, Goel R (2017) Cold stress and nitrogen deficiency affected protein expression of psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1. Front Microbiol 8(430):1–6

    Google Scholar 

  • Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018) Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. J Proteome 187:235–242

    CrossRef  CAS  Google Scholar 

  • Taylor BR, Jones HG (1990) Litter decomposition under snow cover in a balsam fir forest. Can J Bot 68:112–120

    CrossRef  Google Scholar 

  • Thangaraj B, Rajasekar DP, Vijayaraghavan R, Garlapati D, Devanesan AA, Lakshmanan U, Dharmar P (2017) Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: a comparative outlook. 3 Biotech 7(2):1–10

    CrossRef  Google Scholar 

  • Tian L, Zhao L, Wu X, Fang H, Zhao Y, Yue G, Liu G, Chen H (2017) Vertical patterns and controls of soil nutrients in alpine grassland: implications for nutrient uptake. Sci Total Environ 607:855–864

    CrossRef  PubMed  CAS  Google Scholar 

  • Tiwari A, Jha P (2018) An overview of treeline response to environmental changes in Nepal Himalaya. Trop Ecol 59(2):273–285

    Google Scholar 

  • Toppo K, Mandotra SK, Nayaka S, Suseela MR (2016) Algal diversity of high altitude zones in Govind Wild Life Sanctuary, Uttarakhand, India. J Indian Bot Soc 95(3–4):283–287

    Google Scholar 

  • Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Liu X (2015) Psychrophilic fungi from the world’s roof. Persoonia 34:100–112

    CrossRef  CAS  PubMed  Google Scholar 

  • Wu Y, Zhou J, Yu D, Sun S, Luo J, Bing H, Sun H (2013) Phosphorus biogeochemical cycle research in mountainous ecosystems. J Mt Sci 10(1):43–53

    CrossRef  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    CrossRef  CAS  Google Scholar 

  • Yuksek F, Altun L, Karaoz O, Şengonul K, Yuksek T, Kucuk M (2013) The effect of altitude on soil properties and leaf traits in wild Vaccinium arctostaphylos L. populations in the forest understory in Fırtına River basin. In: Proceedings book from international Caucasian forestry symposium, pp 24–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeyakumar, S.P., Dash, B., Singh, A.K., Suyal, D.C., Soni, R. (2020). Nutrient Cycling at Higher Altitudes. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_15

Download citation