Skip to main content

Advancement of Omics: Prospects for Bioremediation of Contaminated Soils

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

The soil is a complex mixture of organic matter and minerals, supporting a discrete array of life. Severely polluted soils have been detoxified using a variety of microorganisms. Bioremediation is a process of removal of environmental contaminants utilizing microbes through a variety of enzymatic processes. In situ processing, high public acceptance, and a comparatively lower cost hasten the overall process of bioremediation. However, it is not always effective due to its relatively long time scales and the variable range of contaminants. Varying degrees of success rate have been noticed at different sites worldwide. This chapter attempts to link the traditional and cutting edge technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics to numerous bioremediation techniques as they play a symbolic role in the study of the regulation of numerous mineralization pathways. Extensive data are being generated using these techniques, but their application is still in the infant stage. A stepwise organization of data is needed within the instructive databases. Microbial-assisted contaminant attenuation and in-depth analysis of the organism’s metabolism will accelerate the overall process of bioremediation. Thereafter, the next decade will going to decipher the cellular mechanisms and molecular manipulations using an integrated omic tool approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah RZ, Wegner CE, Liesack W (2019) Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem 132:131–142

    CAS  Google Scholar 

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    CAS  Google Scholar 

  • Ahn JH, Kim MS, Kim MC, Lim JS, Lee GT, Yun JK, Kim TS, Kim TS, Ka JO (2006) Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J Microbiol Biotechnol 16:704–715

    CAS  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W (2013) Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol Biochem 57:30–42

    CAS  Google Scholar 

  • Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of Central Chile. BMC Microbiol 12:193

    CAS  Google Scholar 

  • Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D (2018) Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environ Microbiol 20:44–61

    CAS  Google Scholar 

  • Awasthi AK, Li J, Pandey AK, Khan J (2019) An overview of the potential of bioremediation for contaminated soil from municipal solid waste site. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 59–68

    Google Scholar 

  • Badin AL, Mustafa T, Bertrand C, Monier A, Delolme C, Geremia RA, Bedell JP (2012) Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity. FEMS Microbiol Ecol 81:324–338

    CAS  Google Scholar 

  • Baldan E, Basaglia M, Fontana F, Shapleigh JP, Casella S (2015) Development, assessment and evaluation of a biopile for hydrocarbons soil remediation. Int Biodeterior Biodegradation 98:66–72

    CAS  Google Scholar 

  • Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 35:133–140

    CAS  Google Scholar 

  • Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651

    CAS  Google Scholar 

  • Bastida F, Nicolás C, Moreno JL, Hernández T, Garcia C (2010) Tracing changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics. Pedosphere 20:479–485

    CAS  Google Scholar 

  • Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y (2009) Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41:409–413

    CAS  Google Scholar 

  • Beauvais-Flück R, Slaveykova VI, Cosio C (2017) Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 7:8034

    Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    CAS  Google Scholar 

  • Benndorf D, Balcke GU, Harms H, Von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224

    CAS  Google Scholar 

  • Bevivino A, Dalmastri C (2017) Impact of agricultural land management on soil bacterial community: a case study in the Mediterranean area. In: Soil biological communities and ecosystem resilience. Springer, Cham, pp 77–95

    Google Scholar 

  • Bhaduri AM, Fulekar MH (2015) Biochemical and RAPD analysis of Hibiscus rosa sinensis induced by heavy metals. Soil Sediment Contam 24:411–422

    Google Scholar 

  • Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Microbial diversity in the genomic era. Academic, Oxford, pp 459–477

    Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34:597–601

    CAS  Google Scholar 

  • Buyer JS, Baligar VC, He Z, Arévalo-Gardini E (2017) Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Appl Soil Ecol 120:273–280

    Google Scholar 

  • Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Sci Total Environ 407:3634–3640

    CAS  Google Scholar 

  • Camacho-Montealegre CM, Rodrigues EM, Tótola MR (2019) Microbial diversity and bioremediation of rhizospheric soils from Trindade Island-Brazil. J Environ Manag 236:358–364

    CAS  Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2017) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242

    CAS  Google Scholar 

  • Chakraborty A, Islam E (2018) Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season. Environ Sci Pollut Res 25:4951–4962

    CAS  Google Scholar 

  • Couger MB, Youssef NH, Struchtemeyer CG, Liggenstoffer AS, Elshahed MS (2015) Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol Biofuels 8:208

    CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Plant 29:207–212

    Google Scholar 

  • De Cárcer DA, Martín M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215

    Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    CAS  Google Scholar 

  • Dong ZY, Huang WH, Xing DF, Zhang HF (2013) Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater 260:399–408

    CAS  Google Scholar 

  • Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43

    Google Scholar 

  • Draghi WO, Del Papa MF, Barsch A, Albicoro FJ, Lozano MJ, Pühler A, Niehaus K, Lagares A (2017) A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti. Metabolomics 13:71

    Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    CAS  Google Scholar 

  • Espínola F, Dionisi HM, Borglin S, Brislawn CJ, Jansson JK, Mac Cormack WP, Carroll J, Sjöling S, Lozada M (2018) Metagenomic analysis of subtidal sediments from polar and subpolar coastal environments highlights the relevance of anaerobic hydrocarbon degradation processes. Microb Ecol 75:123–139

    Google Scholar 

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:3433–3447

    CAS  Google Scholar 

  • Festa S, Coppotelli BM, Madueño L, Loviso CL, Macchi M, Tauil RM, Valacco MP, Morelli IS (2017) Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches. PLoS One 12:e0184505

    Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    CAS  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007

    CAS  Google Scholar 

  • Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100

    CAS  Google Scholar 

  • Frerichs J, Oppermann BI, Gwosdz S, Möller I, Herrmann M, Krüger M (2013) Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column. FEMS Microbiol Ecol 84:60–74

    CAS  Google Scholar 

  • Fu B, Conrad R, Blaser M (2018) Potential contribution of acetogenesis to anaerobic degradation in methanogenic rice field soils. Soil Biol Biochem 119:1–10

    CAS  Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci 105:7774–7778

    CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    CAS  Google Scholar 

  • Garbeva PV, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  Google Scholar 

  • Gasser I, Müller H, Berg G (2009) Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol 70:142–150

    CAS  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    CAS  Google Scholar 

  • Gieg LM, Toth CR (2018) Anaerobic biodegradation of hydrocarbons: metagenomics and metabolomics. In: Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation. Springer, Cham, pp 1–42

    Google Scholar 

  • Gielnik A, Pechaud Y, Huguenot D, Cébron A, Riom JM, Guibaud G, Esposito G, van Hullebusch ED (2019) Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. Sci Total Environ 670:271–281

    CAS  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EA, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586

    Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412

    CAS  Google Scholar 

  • Guerrero-Molina MF, Winik BC, Pedraza RO (2012) More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol 61:205–212

    Google Scholar 

  • Guida M, Cannavacciuolo PL, Cesarano M, Borra M, Biffali E, D’Alessandro R, De Felice B (2014) Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints. J Appl Genet 55:403–415

    CAS  Google Scholar 

  • Habtom H, Demanèche S, Dawson L, Azulay C, Matan O, Robe P, Gafny R, Simonet P, Jurkevitch E, Pasternak Z (2017) Soil characterisation by bacterial community analysis for forensic applications: a quantitative comparison of environmental technologies. Forensic Sci Int Genet 26:21–29

    CAS  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324

    CAS  Google Scholar 

  • Hassan SE, Boon E, Ma S-A, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483

    Google Scholar 

  • Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaïbi W (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol Environ Saf 73:1965–1974

    CAS  Google Scholar 

  • Hilton S, Bennett AJ, Keane G, Bending GD, Chandler D, Stobart R, Mills P (2013) Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. PLoS One 8:e59859

    CAS  Google Scholar 

  • Holmes DE, Shrestha PM, Walker DJ, Dang Y, Nevin KP, Woodard TL, Lovley DR (2017) Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol 83:e00223–e00217

    CAS  Google Scholar 

  • Hoppe T, Schnittler M (2015) Characterization of myxomycetes in two different soils by TRFLP-analysis of partial 18S rRNA gene sequences. Mycosphere 6:216–227

    Google Scholar 

  • Hou L, Wu Q, Gu Q, Zhou Q, Zhang J (2018) Community structure analysis and biodegradation potential of aniline-degrading bacteria in biofilters. Curr Microbiol 75:918–924

    CAS  Google Scholar 

  • Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889

    CAS  Google Scholar 

  • Inui H, Hirota M, Goto J, Yoshihara R, Kodama N, Matsui T, Yamazaki K, Eun H (2015) Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants. Chemosphere 123:48–54

    CAS  Google Scholar 

  • Islam MN, Jo YT, Jung SK, Park JH (2013) Evaluation of subcritical water extraction process for remediation of pesticide-contaminated soil. Water Air Soil Pollut 224:1652

    Google Scholar 

  • Ivanov P, Eickhorst T, Wehrer M, Georgiadis A, Rennert T, Eusterhues K, Totsche KU (2017) Natural attenuation of aged tar-oil in soils: a case study from a former gas production site. InEGU General Assembly Conference Abstracts 19:8586

    Google Scholar 

  • Jayaraman S, Thangaiyan S, Mani K, Nagarajan K, Muthukalingan K (2019) Identification of a novel gene through the metagenomic approach to degrade the targeted pollutant. Microb Biodegrad Xeno Comp 30:204

    Google Scholar 

  • Jiang Y, Qian H, Wang X, Chen L, Liu M, Li H, Sun B (2018) Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol Biochem 119:22–31

    CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. https://doi.org/10.4061/2011/805187

  • Keenan SW, Schaeffer SM, Jin VL, DeBruyn JM (2018) Mortality hotspots: nitrogen cycling in forest soils during vertebrate decomposition. Soil Biol Biochem 121:165–176

    CAS  Google Scholar 

  • Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73:62–70

    CAS  Google Scholar 

  • Khudur LS, Shahsavari E, Miranda AF, Morrison PD, Nugegoda D, Ball AS (2015) Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environ Sci Pollut Res 22:14809–14819

    CAS  Google Scholar 

  • Kim S, Krajmalnik-Brown R, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    CAS  Google Scholar 

  • Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS (2019) Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation. Geoderma 338:216–225

    CAS  Google Scholar 

  • Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manag 217:858–870

    CAS  Google Scholar 

  • Krolicka A, Boccadoro C, Nilsen MM, Baussant T (2017) Capturing early changes in the marine bacterial community as a result of crude oil pollution in a Mesocosm experiment. Microbes Environ 2:358–366

    Google Scholar 

  • Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated alpine soils. FEMS Microbiol Ecol 59:466–475

    Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 5:74–92

    Google Scholar 

  • Lee DW, Lee H, Lee AH, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ (2018) Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ Pollut 234:503–512

    CAS  Google Scholar 

  • Lee MS, Do JO, Park MS, Jung S, Lee KH, Bae KS, Park SJ, Kim SB (2006) Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Anton Leeuw Int J G 90:19–27

    CAS  Google Scholar 

  • Li Y, Ying Y, Zhao D, Jin S, Ding W (2010) Genetic diversity analysis on rhizosphere soil microbial population of Panax ginseng and Panax quinquefolium by RAPD. Zhongcaoyao = Chin Tradit Herb Drug 41:1871–1875

    CAS  Google Scholar 

  • Liang X, Zhuang J, Löffler FE, Zhang Y, DeBruyn JM, Wilhelm SW, Schaeffer SM, Radosevich M (2019) Viral and bacterial community responses to stimulated Fe (III)—bioreduction during simulated subsurface bioremediation. Environ Microbiol 21:2043–2055

    CAS  Google Scholar 

  • Lu Y, Abraham WR, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481

    CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86

    CAS  Google Scholar 

  • Luque-Almagro VM, Moreno-Vivián C, Roldán MD (2016) Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 38:9–13

    CAS  Google Scholar 

  • Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, Kumaresan D, Wu J, Whiteley AS (2017) Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb Ecol 73:645–657

    CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    CAS  Google Scholar 

  • Maqbool F, Wang Z, Xu Y, Zhao J, Gao D, Zhao YG, Bhatti ZA, Xing B (2012) Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. J Hazard Mater 237:262–269

    Google Scholar 

  • Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K (2017) Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ 32:180–183

    Google Scholar 

  • Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS (2012) Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl Environ Soil Sci. https://doi.org/10.1155/2012/548620

  • Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E, Careri M, Visioli G (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2327–2339

    CAS  Google Scholar 

  • Meneghine AK, Nielsen S, Varani AM, Thomas T, Alves LM (2017) Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization. PLoS One 12:e0190178

    Google Scholar 

  • Miller MG (2007) Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats). J Proteome Res 6:540–545

    CAS  Google Scholar 

  • Mishra RK, Mohammad N, Roychoudhury N (2015) Soil pollution: causes, effects and control. Tropical Forest Research Institute 3:20–30

    Google Scholar 

  • Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities-large-scale sequencing of mRNAs retrieved from natural communities provides insights into microbial activities and how they are regulated. Microbe 4:329

    Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    CAS  Google Scholar 

  • Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

    CAS  Google Scholar 

  • Mukherjee A, Yadav R, Marmeisse R, Fraissinet-Tachet L, Reddy MS (2019) Heavy metal hypertolerant eukaryotic aldehyde dehydrogenase isolated from metal contaminated soil by metatranscriptomics approach. Biochimie 160:183–192

    CAS  Google Scholar 

  • Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607–621

    CAS  Google Scholar 

  • Navarro E, Fabrègue O, Scorretti R, Reboulet J, Simonet P, Dawson L, Demanèche S (2015) RisaAligner software for aligning fluorescence data between Agilent 2100 Bioanalyzer chips: application to soil microbial community analysis. BioTechniques 59:347–349

    CAS  Google Scholar 

  • Oates LG, Read HW, Gutknecht JL, Duncan DS, Balser TB, Jackson RD (2017) A lipid extraction and analysis method for characterizing soil microbes in experiments with many samples. J Vis Exp 16:e55310

    Google Scholar 

  • Okabe S, Kindaichi T, Ito T (2004) MAR-FISH—An ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ 19:83–98

    Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–101228

    Google Scholar 

  • Oshoma CE, Igbeta B, Omonigho SE (2017) Analysis of microbiological and physiochemical properties of top soil from municipal dumpsites in Benin City. J Appl Sci Environ Manage 21:985–990

    CAS  Google Scholar 

  • Pal S, Roy A, Kazy SK (2019) Exploring microbial diversity and function in petroleum hydrocarbon associated environments through Omics approaches. In: Microbial diversity in the genomic era. Academic Press, Cambridge, pp 171–194

    Google Scholar 

  • Panigrahi S, Velraj P, Rao TS (2019) Functional microbial diversity in contaminated environment and application in bioremediation. In: Microbial diversity in the genomic era. Academic Press, pp 359–385

    Google Scholar 

  • Panosyan H, Hakobyan A, Birkeland NK, Trchounian A (2018) Bacilli community of saline-alkaline soils from the Ararat plain (Armenia) assessed by molecular and culture-based methods. Syst Appl Microbiol 41:232–240

    Google Scholar 

  • Peng J, Wegner CE, Liesack W (2017) Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol 8:400

    Google Scholar 

  • Petrucco-Toffolo E, Basso A, Kerdelhué C, Ipekdal K, Mendel Z, Simonato M, Battisti A (2018) Evidence of potential hybridization in the Thaumetopoea pityocampa-wilkinsoni complex. Agric For Entomol 20:9–17

    Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833

    CAS  Google Scholar 

  • Piñón-Castillo HA, Gutiérrez DL, Hernández-Castillo D, Muñoz-Castellanos LN, Rivera-Chavira BE, Nevárez-Moorillón GV (2017) Laboratory-scale biodegradation of fuel oil no. 6 in contaminated soils by Autochthonous bacteria. In: Advances in bioremediation and phytoremediation. IntechOpen

    Google Scholar 

  • Rapp JZ, Bienhold C, Offre P, Boetius A (2016) Polysaccharide degradation potential of bacterial communities in Arctic deep-sea sediments (1200–5500 m water depth). In: 16th international symposium on microbial ecology, Montréal, Canada, 21 August 2016–26 August

    Google Scholar 

  • Rastogi G, Stetler LD, Peyton BM, Sani RK (2009) Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol 47:371–384

    Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    CAS  Google Scholar 

  • Ritchie NJ, Schutter ME, Dick RP, Myrold DD (2000) Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ Microbiol 66:1668–1675

    CAS  Google Scholar 

  • Rogers SW, Moorman TB, Ong SK (2007) Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci Soc Am J 71:620–631

    CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Google Scholar 

  • Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54:1–10

    CAS  Google Scholar 

  • Shahsavari E, Schwarz A, Aburto-Medina A, Ball AS (2019) Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Curr Pollut Rep 5:1–9

    Google Scholar 

  • Shanmugam BK, Easwaran SN, Lakra R, Deepa PR, Mahadevan S (2017) Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: a biocalorimetric investigation. Chemosphere 188:81–89

    CAS  Google Scholar 

  • Shekhar SK, Godheja J, Modi DR (2020) Molecular Technologies for Assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 437–474

    Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2018) Analysis of bacterial diversity in different heavy oil Wells of a reservoir in South Oman with alkaline pH. Scientifica 2018:10

    Google Scholar 

  • Shin YJ, Park SM, Yoo JC, Jeon CS, Lee SW, Baek K (2016) A new approach for remediation of as-contaminated soil: ball mill-based technique. Environ Sci Pollut Res 23:3963–3970

    CAS  Google Scholar 

  • Singh SK, Rai MK, Sahoo L (2012) An improved and efficient micropropagation of Eclipta alba through transverse thin cell layer culture and assessment of clonal fidelity using RAPD analysis. Ind Crop Prod 37:328–333

    CAS  Google Scholar 

  • Slade EM, Roslin T, Santalahti M, Bell T (2016) Disentangling the ‘brown world’ faecal–detritus interaction web: dung beetle effects on soil microbial properties. Oikos 125:629–635

    Google Scholar 

  • Srivastava M, Kaushik MS, Mishra AK (2016) Linking the physicochemical properties with the abundance and diversity of Rhizospheric bacterial population inhabiting Paddy soil based on a concerted multivariate analysis of PCR-DGGE and RISA. Geomicrobiol J 33:894–905

    CAS  Google Scholar 

  • Srivastava M, Mishra AK (2018) Comparative responses of diazotrophic abundance and community structure to the chemical composition of paddy soil. Environ Sci Pollut Res 25:399–412

    CAS  Google Scholar 

  • Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236

    CAS  Google Scholar 

  • Stefanis C, Alexopoulos A, Voidarou C, Vavias S, Bezirtzoglou E (2013) Principal methods for isolation and identification of soil microbial communities. Folia Microbiol 58:61–68

    CAS  Google Scholar 

  • Su JQ, Xia Y, Yao HY, Li YY, An XL, Singh BK, Zhang T, Zhu YG (2017) Metagenomic assembly unravel microbial response to redox fluctuation in acid sulfate soil. Soil Biol Biochem 105:244–252

    CAS  Google Scholar 

  • Sukul P, Schäkermann S, Bandow JE, Kusnezowa A, Nowrousian M, Leichert LI (2017) Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics. Microbiome 5:28

    Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845

    CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Al-Soud WA, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2012) Impact of long term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630

    Google Scholar 

  • Szewczyk R, SoboÅ„ A, SÅ‚aba M, DÅ‚ugoÅ„ski J (2015) Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J Hazard Mater 291:52–64

    CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    CAS  Google Scholar 

  • Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW (2008) Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol 74:2822–2833

    CAS  Google Scholar 

  • Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Iustman LJ, Lopez NI (2018) Microaerophilic alkane degradation in pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol 45:15–23

    CAS  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chakrabarty D (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    CAS  Google Scholar 

  • Utturkar SM, Bollmann A, Brzoska RM, Klingeman DM, Epstein SE, Palumbo AV, Brown SD (2013) Draft genome sequence for Caulobacter sp. strain OR37, a bacterium tolerant to heavy metals. Genome Announc 1:e00322–e00313

    Google Scholar 

  • Utturkar SM, Cude WN, Robeson MS, Yang ZK, Klingeman DM, Land ML, Allman SL, Lu TY, Brown SD, Schadt CW, Podar M (2016) Enrichment of root endophytic bacteria from populus deltoides and single-cell-genomics analysis. Appl Environ Microbiol 82:5698–5708

    CAS  Google Scholar 

  • Viant MR (2009) Applications of metabolomics to the environmental sciences. Metabolomics 5:1–2

    CAS  Google Scholar 

  • Villiers F, Hugouvieux V, Leonhardt N, Vavasseur A, Junot C, Vandenbrouck Y, Bourguignon J (2012) Exploring the plant response to cadmium exposure by transcriptomic, proteomic and metabolomic approaches: potentiality of high-throughput methods, promises of integrative biology. In: Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin, pp 119–142

    Google Scholar 

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164

    CAS  Google Scholar 

  • Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    CAS  Google Scholar 

  • Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M, Muangchinda C, Morita T, Suzuki-Minakuchi C, Inoue K, Nojiri H, Pinyakong O (2018) Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater 342:561–570

    CAS  Google Scholar 

  • Wang DZ, Kong LF, Li YY, Xie ZX (2016) Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci 17:1275

    Google Scholar 

  • Wang X, Sharp CE, Jones GM, Grasby SE, Brady AL, Dunfield PF (2015) Stable-isotope probing identifies uncultured Planctomycetes as primary degraders of a complex heteropolysaccharide in soil. Appl Environ Microbiol 81:4607–4615

    CAS  Google Scholar 

  • Wang Y, Tian H, Huang F, Long W, Zhang Q, Wang J, Zhu Y, Wu X, Chen G, Zhao L, Bakken LR (2017) Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline. Sci Rep 7:14778

    Google Scholar 

  • Wei K, Yin H, Peng H, Liu Z, Lu G, Dang Z (2017) Characteristics and proteomic analysis of pyrene degradation by Brevibacillus brevis in liquid medium. Chemosphere 178:80–87

    CAS  Google Scholar 

  • Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97

    CAS  Google Scholar 

  • Wu T, Chellemi DO, Graham JH, Rosskopf EN (2008) Assessment of fungal communities in soil and tomato roots subjected to diverse land and crop management systems. Soil Biol Biochem 40:1967–1970

    CAS  Google Scholar 

  • Yang MM, Xu LP, Xue QY, Yang JH, Xu Q, Liu HX, Guo JH (2012a) Screening potential bacterial biocontrol agents towards Phytophthora capsici in pepper. Eur J Plant Pathol 134:811–820

    CAS  Google Scholar 

  • Yang S, Wen X, Jin H, Wu Q (2012b) Pyrosequencing investigation into the bacterial community in permafrost soils along the China-Russia crude oil pipeline (CRCOP). PLoS One 7:e52730

    CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058

    CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344

    CAS  Google Scholar 

  • Yun SH, Choi CW, Lee SY, Lee YG, Kwon J, Leem SH, Chung YH, Kahng HY, Kim SJ, Kwon KK, Kim SI (2014) Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 9:e90812

    Google Scholar 

  • Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Kubicek CP, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79

    CAS  Google Scholar 

  • Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P (2019) Genome analysis and-omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Environ Microbiol 103:1069–1080

    CAS  Google Scholar 

  • Zeng XW, Qiu RL, Ying RR, Tang YT, Tang L, Fang XH (2011) The differentially-expressed proteome in Zn/cd hyperaccumulator Arabis paniculata Franch. In response to Zn and cd. Chemosphere 82:321–328

    CAS  Google Scholar 

  • Zhao L, Zhang H, White JC, Chen X, Li H, Qu X, Ji R (2019) Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environ Sci Nano 6:1716–1727

    CAS  Google Scholar 

  • Zhou X, Wu F (2012) P-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS One 7:e48288

    CAS  Google Scholar 

  • Zitnick-Anderson K, Simons K, Pasche JS (2018) Detection and qPCR quantification of seven Fusarium species associated with the root rot complex in field pea. Can J Plant Pathol 40:261–271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angana Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, K., Biswas, R., Sarkar, A. (2020). Advancement of Omics: Prospects for Bioremediation of Contaminated Soils. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_5

Download citation

Publish with us

Policies and ethics