Skip to main content

Ligninolysis: Roles of Microbes and Their Extracellular Enzymes

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

Biodegradation of lignin, one of the most abundant components of lignocellulosic plant biomass, represents a key step for carbon recycling. The structure of lignin, however, makes it recalcitrant to degradation. This correlates both to environmental issues and agroindustrial utilization of lignocellulosic plant biomass. By cross-linking to both cellulose and hemicellulose, lignin forms a barrier that prevents the accessibility of chemicals or lignocellulolytic enzymes into the interior of lignocellulosic structure. The presence of lignin negatively affects the utility of cellulose in pulp and paper industry, textile industry, biofuel production, as well as animal feed. To improve the bioprocessing of lignocellulosic feedstocks in various industries, more effective degradation methods of lignin are in high demand. Some microbes are able to efficiently degrade lignin using a combination of extracellular ligninolytic enzymes, organic acids, mediators, and several accessory enzymes. Exploring the range of ligninolytic microbial biodiversity is the key to developing effective and eco-friendly strategies for environmental restoration or optimal and sustainable agroindustrial utilization of plant biomass. This study gives an insight of ligninolytic microbes and the extracellular enzymes implicated in lignin degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarti C, Arasu MV, Agastian P (2015) Lignin degradation: a microbial approach. South Indian J Biol Sci 1:119–127

    Google Scholar 

  • Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28

    CAS  Google Scholar 

  • Aguiar A, Ferraz A (2007) Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere 66:947–954

    CAS  Google Scholar 

  • Alcalde M (2015) Engineering the ligninolytic enzyme consortium. Trends Biotechnol 33:155–162

    CAS  Google Scholar 

  • Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366

    CAS  Google Scholar 

  • Arantes V, Milagres AMF (2007) The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fungi for degradation of Azure B. Enzym Microb Technol 42:17–22

    CAS  Google Scholar 

  • Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye azure B. Appl Environ Microbiol 58:3110–3116

    CAS  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    CAS  Google Scholar 

  • Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946

    CAS  Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energy Res 2:1–13

    Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119

    CAS  Google Scholar 

  • da Silva C-MJ, Maciel GM, Castoldi R, da Silva MS, Dorneles Inácio F, Bracht A, Peralta RM (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Price A (ed) Herbicides–advances in research. In Tech, Rijeka

    Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  Google Scholar 

  • de Koker TH, Mozuch MD, Cullen D, Gaskell J, Kersten PJ (2004) Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl Environ Microbiol 70:5794–5800

    Google Scholar 

  • Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Biotechnol 21:1415–1423

    CAS  Google Scholar 

  • Erden E, Ucar CM, Gezer T, Pazarlioglu NK (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue. Braz J Microbiol 40:346–353

    CAS  Google Scholar 

  • Ferreira-Neila P, Hernandez-Ortega A, Herguedas B, Rencoret J, Gutiérrez A, Martínez MJ, Jiménez-Barbero J, Medina M, Martínez AT (2010) Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase. Biochem J 425:585–593

    Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira-Neila P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, La Butti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, DJ ML, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    CAS  Google Scholar 

  • Garcia-Ruiz E, Mate DM, Gonzalez-Perez D, Molina-Espeja P, Camarero S, Martınez AT, Ballesteros AO, Alcalde M (2014) Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond. In: Fessner W (ed) Cascade biocatalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–22

    Google Scholar 

  • Gellerstedt G, Henriksson G (2008) In: Belgacem M, Gandini A (eds) Lignins: major sources, structure and properties. Elsevier, Amsterdam, pp 201–224

    Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    CAS  Google Scholar 

  • Hatakka A (2005) Biodegradation of lignin. In: Alexander S (ed) Biopolymers [online]. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hatakka A, Hammel KE (2011) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Industrial applications. Springer, Berlin, pp 319–340

    Google Scholar 

  • Hernandez-Ortega A, Ferreira-Neila P, Martinez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410

    CAS  Google Scholar 

  • Herpoël I, Moukha S, Lesage-Meessen L, Sigoillot JC, Asther M (2000) Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol Lett 183:301–306

    Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, London

    Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enz Microb Technol 30:454–466

    CAS  Google Scholar 

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288

    CAS  Google Scholar 

  • Huang XF, Santhanam N, Badri DV, Hunter WJ (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626

    CAS  Google Scholar 

  • Hunt CG, Houtman CJ, Jones DC, Kitin P, Korripally P, Hammel KE (2013) Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism. Environ Microbiol 15:956–966

    CAS  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlik A, Staszczaka M, Paszczynskic AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12

    CAS  Google Scholar 

  • Kajisa T, Yoshida M, Igarashi K, Katayamab A, Nishino T, Samejimaa M (2004) Characterization and molecular cloning of cellobiose dehydrogenase from the brown- rot fungus Coniophora puteana. J Biosci Bioeng 98:57–63

    CAS  Google Scholar 

  • Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS (2018) Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB Biotechnol Biofuels 11:154–176

    Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    CAS  Google Scholar 

  • Lambertz C, Ece S, Fischer R, Commandeur U (2016) Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 7:145–154

    CAS  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    CAS  Google Scholar 

  • Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638–645

    CAS  Google Scholar 

  • Li J, Yuan H, Yang J (2009) Bacteria and lignin degradation. Front Biol China 4:29–38

    Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102

    CAS  Google Scholar 

  • Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30:542–549

    Google Scholar 

  • Nelsen MP, DiMichele WA, Peters SE, Boycea CK (2016) Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc Natl Acad Sci U S A 113:2442–2447

    CAS  Google Scholar 

  • Nousiainen P, Maijala P, Hatakka A, Martinez AT (2009) Syringyl-type simple plant phenolics as mediating oxidants in laccase catalyzed degradation of lignocellulosic materials: model compound studies. Holzforschung 63:699–704

    CAS  Google Scholar 

  • O’Neill R, Snowdon RJ, Kohler W (2003) Population genetics aspects of biodiversity. Prog Bot 64:115–137

    Google Scholar 

  • Olga VKS, Elena VS, Valeria PG, Olga VM, Natalia VL, Aida ND, Alexander IJ, Alexander M (1998) Purification and characterization of the constitutive form of laccase from basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol Appl Biochem 28:47–54

    Google Scholar 

  • Ortiz-Bermudez P, Srebotnik E, Hammel KE (2003) Chlorination and cleavage of lignin structures by fungal chloroperoxidases. Appl Environ Microb 69:5015–5018

    CAS  Google Scholar 

  • Oyadomari M, Shinohara H, Johjima T, Wariishi H, Tanaka H (2003) Electrochemical characterization of lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium. J Mol Catal B Enzymatic 21:291–297

    CAS  Google Scholar 

  • Palacios-Orueta A, Chuvieco E, Parra A, Carmona-Moreno C (2005) Biomass burning emissions: a review of models using remote-sensing data. Environ Monit Assess 104:189–209

    CAS  Google Scholar 

  • Piontek K, Ullrich R, Liers C, Diederichs K, Plattner DA, Hofrichter M (2010) Crystallization of a 45 kDa peroxygenase/ peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron. Acta Crystallogr F 66:693–698

    CAS  Google Scholar 

  • Piumi F, Levasseur A, Navarro D, Zhou S, Mathieu Y, Ropartz D, Ludwig D, Faulds CB, Record E (2014) A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Appl Microbiol Biotechnol 98:10105–10118

    CAS  Google Scholar 

  • Poppius-Levlin K, Wang M, Tamminen T, Hortling B, Viikari L, Niku-Paavola ML (1999) Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Paper Sci 25:90–94

    CAS  Google Scholar 

  • Presley GN, Panisko E, Purvine SO, Schilling JS (2018) Coupling secretomics with enzyme activities to compare the temporal processes of wood metabolism among white and brown rot fungi. Appl Environ Microbiol 84:1–12

    Google Scholar 

  • Qin X, Luo H, Zhang X, Yao B, Ma F, Su X (2018) Dye-decolorizing peroxidases in Irpex lacteus combining the catalytic properties of heme peroxidases and laccase play important roles in ligninolytic system. Biotechnol Biofuels 11:302–312

    CAS  Google Scholar 

  • Rastogi S, Chaudhary I (2011) Microbial degradation of lignin for enhancing the agroindustrial utility of plant biomass. In: Paterson RJ (ed) Lignin: properties and applications in biotechnology and bioenergy. Nova Science Publishers Inc., New York, pp 307–330

    Google Scholar 

  • Rastogi S, Dwivedi UN (2006) Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene. Biotechnol Prog 22:609–616

    CAS  Google Scholar 

  • Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 174:264–277

    CAS  Google Scholar 

  • Rastogi Verma S, Dwivedi UN (2014) Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries, fodder and bioenergy production. South Afr J Bot 91:107–125

    Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Google Scholar 

  • Rytioja J, Hilden K, Yuzon J, Hatakka A, de Vries RP, Makela MR (2014) Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 78:614–649

    Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    CAS  Google Scholar 

  • Santhanam N, Badri DV, Decker SR, Manter DK (2012) Lignocellulose decomposition by microbial secretions. In: Vivanco MJ, Baluska F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 125–153

    Google Scholar 

  • Santos RB, Hart PW, Jameel H, Chang H (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. Bioresources 8:1456–1477

    Google Scholar 

  • Schmidt O (2006) Wood and tree fungi: biology, damage, protection and use. Springer, Berlin

    Google Scholar 

  • Sigoillot JC, Berrin JG, Bey Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. In: Jouanin L, Lapierre C (eds) Lignins: biosynthesis, biodegradation and bioengineering, vol 61. Academic Press, Elsevier, London, pp 263–308

    Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  • Wang L, Nie Y, Tang Y-Q, Song X-M, Cao K, Sun L-Z, Wang Z-J, Wu X-L (2016) Diverse Bacteria with lignin degrading potentials isolated from two ranks of coal. Front Microbiol 7:1428–1441

    Google Scholar 

  • Wang X, Ullrich R, Hofrichter M, Groves JT (2015) Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proc Natl Acad Sci U S A 112:3686–3691

    CAS  Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13:413–429

    CAS  Google Scholar 

  • Yamada Y, Wang J, Kawagishi H, Hirai H (2014) Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 78:2128–2133

    CAS  Google Scholar 

  • Zamocky M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obingera C (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, I., Verma, S.R. (2020). Ligninolysis: Roles of Microbes and Their Extracellular Enzymes. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_14

Download citation

Publish with us

Policies and ethics