Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrinopathy affecting both the metabolism and reproductive system of women of reproductive age. Prevalence ranges from 6.1–19.9% depending on the criteria used to give a diagnosis. PCOS accounts for approximately 80% of women with anovulatory infer-tility, and causes disruption at various stages of the reproductive axis. Evidence suggests lifestyle modification should be the first line of therapy for women with PCOS. Several studies have examined the impact of exercise interventions on reproductive function, with results indicating improvements in menstrual and/or ovulation frequency following exercise. Enhanced insulin sensitivity underpins the mechanisms of how exercise restores reproductive function. Women with PCOS typically have a cluster of metabolic abnormalities that are risk factors for CVD. There is irrefutable evidence that exercise mitigates CVD risk factors in women with PCOS. The mechanism by which exercise improves many CVD risk factors is again associated with improved insulin sensitivity and decreased hyperinsulinemia. In addition to cardiometabolic and reproductive complications, PCOS has been associated with an increased prevalence of mental health disorders. Exercise improves psychological well-being in women with PCOS, dependent on certain physiological factors. An optimal dose–response relationship to exercise in PCOS may not be feasible because of the highly individualised characteristics of the disorder. Guidelines for PCOS suggest at least 150 min of physical activity per week. Evidence confirms that this should form the basis of any clinician or healthcare professional prescription.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO (2004) The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metabol 89(6):2745–2749
Burks HR, Wild RA (2014) Diagnostic criteria and epidemiology of PCOS. In: Pal L (ed) Polycystic ovary syndrome: current and emerging concepts. Springer, New York, pp 3–10
Zawadski JK, Dunaif A (1992) Diagnostic criteria for polycystic ovary syndrome; towards a rational approach. In: Dunaif A, Givens JR, Haseltine F (eds) Polycystic ovary syndrome. Black-well Scientific, Boston, pp 377–384
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25
Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF (2009) The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91(2):456–488
Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H (2012) Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 27(10):3067–3073
March WA, Moore VM, Willson KJ, Phillips DIW, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25(2):544–551
Khani B, Mehrabian F (2014) The prevalence of polycystic ovary syndrome in Iranian women based on different diagnostic criteria. Iran J Reprod Med 12(6):73
Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF (2006) Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metabol 91(11):4237–4245
Hutchison SK, Stepto NK, Harrison CL, Moran LJ, Strauss BJ, Teede HJ (2011) Effects of exercise on insulin resistance and body composition in overweight and obese women with and without polycystic ovary syndrome. J Clin Endocrinol Metabol 96(1):48–56
Carmina E, Lobo RA (2004) Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril 82(3):661–665
Kim J, Choi Y (2013) Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci 53(3):137–142
Sirmans SM, Pate KA (2013) Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 6:1
Sattar N (2006) Vascular and metabolic issues in PCOS. In: Greer I, Ginsbery J, Forbes C (eds) Women’s vascular health. Hodder Arnold, London, pp 265–279
Dewailly D (2016) Diagnostic criteria for PCOS: is there a need for a rethink? Best Pract Res Clin Obstet Gynaecol 37:5–11
Norman RJ, Noakes M, Wu R, Davies MJ, Moran L, Wang JX (2004) Improving reproductive performance in overweight/obese women with effective weight management. Hum Reprod Update 10(3):267–280
Ginsberg HN, Zhang Y, Hernandez-Ono A (2005) Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 36(3):232–240
Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci 104(31):12587–12594
Legro R (2012) Obesity and PCOS: implications for diagnosis and treatment. Semin Reprod Med 30(6):496–506
Johansson J, Stener-Victorin E (2013) Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. Evid Based Complement Alternat Med 2013:1–16
Ndefo UA, Eaton A, Green MR (2013) Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharm Ther 38(6):336–355
Ladson G, Dodson WC, Sweet SD, Archibong AE, Kunselman AR, Demers LM, Lee PA, Williams NI, Coney P, Legro RS (2011) The effects of metformin with lifestyle therapy in polycystic ovary syndrome: a randomized double-blind study. Fertil Steril 95(3):1059–1066
Krystock A (2014) Role of lifestyle and diet in the management of polycysitc ovarian syndrome. In: Pal L (ed) Polycystic ovary syndrome: current and emerging concepts. Springer, New York, pp 147–164
Harrison CL, Lombard CB, Moran LJ, Teede HJ (2011) Exercise therapy in polycystic ovary syndrome: a systematic review. Hum Reprod Update 17(2):171–183
Torrealday S, Patrizio P (2014) Managing PCOS-related infertility: ovulation induction, in vitro fertilization, and in vitro maturation. In: Pal L (ed) Polycystic ovary syndrome: current and emerging concepts. Springer, New York, pp 205–264
Gill S, Hall J (2014) The hypothalamic-pituitary axis in PCOS. In: Pal L (ed) Polycystic ovary syndrome: current and emerging concepts. Springer, New York, pp 81–93
Adams JM, Taylor AE, Crowley WF, Hall JE (2004) Polycystic ovarian morphology with regular ovulatory cycles: insights into the pathophysiology of polycystic ovarian syndrome. J Clin Endocrinol Metabol 89(9):4343–4350
Legro RS (2000) Evaluation and treatment of polycystic ovary syndrome. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al (eds)Endotext South Dartmouth: MDText.com, Inc.
Vigorito C, Giallauria F, Palomba S, Cascella T, Manguso F, Lucci R, De Lorenzo A, Tafuri D, Lombardi G, Colao A, Orio F (2007) Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J Clin Endocrinol Metabol 92(4):1379–1384
Thomson RL, Buckley JD, Noakes M, Clifton PM, Norman RJ, Brinkworth GD (2009) The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J Clin Endocrinol Metabol 93(9):3373–3380
Palomba S, Giallauria F, Falbo A, Russo T, Oppedisano R, Tolino A, Colao A, Vigorito C, Zullo F, Orio F (2008) Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24-week pilot study. Hum Reprod 23(3):642–650
Pericleous P, Stephanides S (2018) Can resistance training improve the symptoms of polycystic ovary syndrome? BMJ Open Sport Exerc Med 4(1):e000372
Mahoney D (2014) Lifestyle modification intervention among infertile overweight and obese women with polycystic ovary syndrome. J Am Assoc Nurse Pract 26(6):301–308
Vizza L, Smith CA, Swaraj S, Agho K, Cheema BS (2016) The feasibility of progressive resistance training in women with polycystic ovary syndrome: a pilot randomized controlled trial. BMC Sports Sci Med Rehabil 8(1):14
Joham AE, Palomba S, Hart R (2016) Polycystic ovary syndrome, obesity, and pregnancy. Semin Reprod Med 34(2):93–101
McDonnell R, Hart RJ (2017) Pregnancy-related outcomes for women with polycystic ovary syndrome. Womens Health 13(3):89–97
McCartney CR, Eagleson CA, Marshall JC (2002) Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med 20(4):317–326
Tsutsumi R, Webster NJG (2009) GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J 56(6):729–737
Amer SA, Mahran A, Abdelmaged A, El-Adawy AR, Eissa MK, Shaw RW (2013) The influence of circulating anti-Müllerian hormone on ovarian responsiveness to ovulation induction with gonadotrophins in women with polycystic ovarian syndrome: a pilot study. Reprod Biol Endocrinol 11(1):115
Woo H, Kim K, Rhee E, Park H, Lee M (2012) Differences of the association of anti-Müllerian hormone with clinical or biochemical characteristics between women with and without polycystic ovary syndrome. Endocr J 59(9):781–790
Dokras A (2013) Cardiovascular disease risk in women with PCOS. Steroids 78(8):773–776
Papadakis G, Kandaraki E, Papalou O, Vryonidou A, Diamanti-Kandarakis E (2017) Is cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol 42(4):340–355
Meyer ML, Malek AM, Wild RA, Korytkowski MT, Talbott EO (2012) Carotid artery intima-media thickness in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 18(2):112–126
Duleba AJ, Dokras A (2012) Is PCOS an inflammatory process? Fertil Steril 97(1):7–12
Orio F, Palomba S, Cascella T, Di Biase S, Manguso F, Tauchmanovà L, Nardo LG, Labella D, Savastano S, Russo T, Zullo F, Colao A, Lombardi G (2005) The increase of leukocytes as a new putative marker of low-grade chronic inflammation and early cardiovascular risk in polycystic ovary syndrome. J Clin Endocrinol Metabol 90(1):2–5
Calan M, Kume T, Yilmaz O, Arkan T, Kocabas GU, Dokuzlar O, Aygun K, Oktan MA, Danis N, Temur M (2016) A possible link between luteinizing hormone and macrophage migration inhibitory factor levels in polycystic ovary syndrome. Endocr Res 41(3):261–269
Calan M, Yilmaz O, Kume T, Unal Kocabas G, Yesil Senses P, Senses YM, Temur M, Calan OG (2016) Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome. Endocrine 53(1):271–279
Covington JD, Tam CS, Pasarica M, Redman LM (2016) Higher circulating leukocytes in women with PCOS is reversed by aerobic exercise. Biochimie 124:27–33
Çakıroğlu Y, Vural F, Vural B (2016) The inflammatory markers in polycystic ovary syndrome: association with obesity and IVF outcomes. J Endocrinol Investig 39(8):899–907
Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R (2002) Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord 26:883–896
Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51(12):3391–3399
Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD (2001) Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 31(15):1033–1062
Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med 44(2):211–221
Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med 34(6):371–418
Katzmarzyk PT, Leon AS, Wilmore JH, Skinner JS, Rao DC, Rankinen T, Bouchard C (2003) Targeting the metabolic syndrome with exercise: evidence from the HERITAGE Family Study. Med Sci Sports Exerc 35(10):1703–1709
Benham JL, Yamamoto JM, Friedenreich CM, Rabi DM, Sigal RJ (2018) Role of exercise training in polycystic ovary syndrome: a systematic review and meta-analysis. Clin Obes 8:275
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952
Beavers KM, Brinkley TE, Nicklas BJ (2010) Effect of exercise training on chronic inflammation. Clin Chim Acta 411(11–12):785–793
Halverstadt A, Phares DA, Wilund KR, Goldberg AP, Hagberg JM (2007) Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metab Clin Exp 56(4):444–450
Brown AJ, Setji TL, Sanders LL, Lowry KP, Otvos JD, Kraus WE, Svetkey PL (2009) Effects of exercise on lipoprotein particles in women with polycystic ovary syndrome. Med Sci Sports Exerc 41(3):497–504
Janssen I, Katzmarzyk PT, Ross R (2004) Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 79(3):379–384
Hagberg JM, Park JJ, Brown MD (2000) The role of exercise training in the treatment of hypertension: an update. Sports Med 30(3):193–206
Giallauria F, Palomba S, Maresca L, Vuolo L, Tafuri D, Lombardi G, Colao A, Vigorito C, Orio F (2008) Exercise training improves autonomic function and inflammatory pattern in women with polycystic ovary syndrome (PCOS). Clin Endocrinol 69(5):792–798
Brown AJ, Setji TL, Sanders LL, Lowry KP, Otvos JD, Kraus WE (2009) Effects of exercise on lipoprotein particles in women with polycystic ovary syndrome. Med Sci Sports Exerc 41(3):497–504
Vigorito C, Giallauria F, Palomba S, Cascella T, Manguso F, Lucci R, De Lorenzo A, Tafuri D, Lombardi G, Colao A, Orio F (2007) Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 92(4):1379–1384
Ben Salem Hachmi L, Ben Salem Hachmi S, Bouzid C, Younsi N, Smida H, Bouguerra R (2006) Hypertension in polycystic ovary syndrome. Arch Mal Coeur Vaiss 99(7–8):687–690
Joham AE, Boyle JA, Zoungas S, Teede HJ (2015) Hypertension in reproductive-aged women with polycystic ovary syndrome and association with obesity. Am J Hypertens 28(7):847–851
Aye MM, Butler AE, Kilpatrick ES, Kirk R, Vince R, Rigby AS, Sandeman D, Atkin SL (2018) Dynamic change in insulin resistance induced by free fatty acids is unchanged though insulin sensitivity improves following endurance exercise in PCOS. Front Endocrinol 9:592
Teede HJ, Hutchison S, Zoungas S, Meyer C (2006) Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS. Endocrine 30(1):45–53
Zhou M, Wang A, Yu H (2015) Link between insulin resistance and hypertension: what is the evidence from evolutionary biology? Diabetol Metab Syndr 6(1):12
Baptiste CG, Battista M, Trottier A, Baillargeon J (2010) Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol 122(1):42–52
Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ (2009) Treatment of obesity in polycystic ovary syndrome: a position statement of the androgen excess and polycystic ovary syndrome society. Fertil Steril 92(6):1966–1982
González F (2012) Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4):300–305
Carpentier AC (2008) Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes. Diabetes Metab 34(2):97–107
Carmina E, Bucchieri S, Esposito A, Del Puente A, Mansueto P, Orio F, Fede G, Rini GB (2007) Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab 92(7):2500–2505
Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017
Stanford KI, Goodyear LJ (2014) Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38(4):308–314
Himelein MJ, Thatcher SS (2006) Polycystic ovary syndrome and mental health: a review. Obstet Gynecol Surv 61(11):723–732
Blay SL, Aguiar JVA, Passos IC (2016) Polycystic ovary syndrome and mental disorders: a systematic review and exploratory meta-analysis. Neuropsychiatr Dis Treat 12:2895–2903
Tan J, Wang Q, Feng G, Li X, Huang W (2017) Increased risk of psychiatric disorders in women with polycystic ovary syndrome in Southwest China. Chin Med J 130(3):262–266
Sadeeqa S, Mustafa T, Latif S (2018) Polycystic ovarian syndrome–related depression in adolescent girls: a review. J Pharm Bioallied Sci 10(2):55–59
Hussain A, Chandel RK, Ganie MA, Dar MA, Rather YH, Wani ZA, Shiekh JA, Shah MS (2015) Prevalence of psychiatric disorders in patients with a diagnosis of polycystic ovary syndrome in Kashmir. Indian J Psychol Med 37(1):66–70
Scaruffi E, Gambineri A, Cattaneo S, Turra J, Vettor R, Mioni R (2014) Personality and psychiatric disorders in women affected by polycystic ovary syndrome. Front Endocrinol 5:185
Davari-Tanha F, Hosseini Rashidi B, Ghajarzadeh M, Noorbala AA (2014) Bipolar disorder in women with polycystic ovarian syndrome (PCO). Acta Med Iran 52(1):46–48
Kerchner A, Lester W, Stuart SP, Dokras A (2009) Risk of depression and other mental health disorders in women with polycystic ovary syndrome: a longitudinal study. Fertil Steril 91(1):207–212
Fontaine KR, Barofsky I, Andersen RE, Bartlett SJ, Wiersema L, Cheskin LJ (1999) Impact of weight loss on health-related quality of life. Qual Life Res 8(3):275–277
Kaukua J, Pekkarinen T, Sane T, Mustajoki P (2003) Health-related quality of life in obese outpatients losing weight with very-low-energy diet and behaviour modification: a 2-y follow-up study. Int J Obesity Relat Metab Disord 27(9):1072–1080
DiLorenzo TM, Bargman EP, Stucky-Ropp R, Brassington GS, Frensch PA, LaFontaine T (1999) Long-term effects of aerobic exercise on psychological outcomes. Prev Med 28(1):75–85
Byrne A, Byrne DG (1993) The effect of exercise on depression, anxiety and other mood states: a review. J Psychosom Res 37(6):565–574
Galletly C, Moran L, Noakes M, Clifton P, Tomlinson L, Norman R (2007) Psychological benefits of a high-protein, low-carbohydrate diet in obese women with polycystic ovary syndrome—a pilot study. Appetite 49(3):590–593
Thomson RL, Buckley JD, Lim SS, Noakes M, Clifton PM, Norman RJ, Brinkworth GD (2010) Lifestyle management improves quality of life and depression in overweight and obese women with polycystic ovary syndrome. Fertil Steril 94(5):1812–1816
Ladson G, Dodson WC, Sweet SD, Archibong AE, Kunselman AR, Demers LM, Lee PA, Williams NI, Coney P, Legro RS (2011) Effects of metformin in adolescents with polycystic ovary syndrome undertaking lifestyle therapy: a pilot randomized double-blind study. Fertil Steril 95(8):6
Conte F, Banting L, Teede HJ, Stepto NK (2015) Mental health and physical activity in women with polycystic ovary syndrome: a brief review. Sports Med 45(4):497–504
Stener-Victorin E, Holm G, Janson PO, Gustafson D, Waern M (2013) Acupuncture and physical exercise for affective symptoms and health-related quality of life in polycystic ovary syndrome: secondary analysis from a randomized controlled trial. BMC Complement Altern Med 13:131
Nidhi R, Padmalatha V, Nagarathna R, Amritanshu R (2012) Effect of holistic yoga program on anxiety symptoms in adolescent girls with polycystic ovarian syndrome: a randomized control trial. Int J Yoga 5(2):112–117
Banting LK, Gibson-Helm M, Polman R, Teede HJ, Stepto NK (2014) Physical activity and mental health in women with polycystic ovary syndrome. BMC Womens Health 14(1):51
Lamb JD, Johnstone EB, Rousseau J, Jones CL, Pasch LA, Cedars MI, Huddleston HG (2001) Physical activity in women with polycystic ovary syndrome: prevalence, predictors, and positive health associations. Am J Obstet Gynecol 204(4):6
Liao LM, Nesic J, Chadwick PM, Brooke-Wavell K, Prelevic GM (2008) Exercise and body image distress in overweight and obese women with polycystic ovary syndrome: a pilot investigation. Gynecol Endocrinol 24(10):555–561
Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK (2010) Interactions between obesity and obstructive sleep apnea. Chest 137(3):711–719
Vgontzas AN, Legro RS, Bixler EO, Grayev A, Kales A, Chrousos GP (2001) Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. J Clin Endocrinol Metab 86(2):517–520
Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15(1):7–24
Benson S, Arck PC, Tan S, Hahn S, Mann K, Rifaie N, Janssen OE, Schedlowski M, Elsenbruch S (2009) Disturbed stress responses in women with polycystic ovary syndrome. Psychoneuroendocrinology 34(5):727–735
Fleshner F (2005) Physical activity and stress resistance: sympathetic nervous system adaptations prevent stress-induced immunosuppression. Exerc Sport Sci Rev 33(3):120
Brown JD, Siegel JM (1988) Exercise as a buffer of life stress: a prospective study of adolescent health. Health Psychol 7(4):341–353
Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, Lobo R, Norman RJ, Talbott E, Dumesic DA (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the androgen excess and polycystic ovary syndrome (AE-PCOS) society. J Clin Endocrinol Metab 95(5):2038–2049
Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, Norman RJ, Costello MF (2011) Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust 195(6):65
Domecq JP, Prutsky G, Mullan RJ, Hazem A, Sundaresh V, Elamin MB, Phung OJ, Wang A, Hoeger K, Pasquali R, Erwin P, Bodde A, Montori VM, Murad MH (2013) Lifestyle modification programs in polycystic ovary syndrome: systematic review and meta-analysis. J Clin Endocrinol Metab 98(12):4655–4663
Harrison CL, Stepto NK, Hutchison SK, Teede HJ (2012) The impact of intensified exercise training on insulin resistance and fitness in overweight and obese women with and without polycystic ovary syndrome. Clin Endocrinol 76(3):351–357
Cheema BS, Vizza L, Swaraj S (2014) Progressive resistance training in polycystic ovary syndrome: can pumping iron improve clinical outcomes? Sports Med 44(9):1197–1207
Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24(6):623–627
Acknowledgement
Competing financial interests: The authors declare no competing financial interests.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Woodward, A., Klonizakis, M., Broom, D. (2020). Exercise and Polycystic Ovary Syndrome. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_8
Download citation
DOI: https://doi.org/10.1007/978-981-15-1792-1_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1791-4
Online ISBN: 978-981-15-1792-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)