Skip to main content

Exercise and Dementia

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1228)

Abstract

Several experimental and human studies documented the preventive and therapeutic effects of exercise on various diseases as well as the normal physiological function of different systems during aging. The findings of several basic animal studies and clinical investigations identified the advantageous effects of exercise as non-pharmaceutical intervention on dementia and Alzheimer’s disease (AD). The main positive effects suggested for exercise are less cognitive and behavioral impairment or decline, development of health-associated conditions (stress, sleep), reduction of dementia risk factors including chronic non-communicable disease (diabetes, cardiovascular disease), increase in neurotrophins, enhancement of brain blood flow, angiogenesis, neurogenesis, synaptogenesis and synaptic plasticity in the brain memory-related region (e.g., hippocampus), and reduction of neuroinflammation and apoptosis. However, regarding the controversial evidence in literature, designing standard clinical and experimental studies to reveal the correlation between physical activity and dementia sign and symptom including biomarker alternation, brain supramolecular and molecular changes, and neuropsychological manifestation is necessary for preparation of effective guidelines and recommendations.

Keywords

  • Exercise
  • Physical activity
  • Dementia
  • Alzheimer
  • Prevention
  • Treatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-1792-1_20
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-1792-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 20.1

References

  1. Korolev IO (2014) Alzheimer’s disease: a clinical and basic science review. Med Stud Res J 4:24–33

    Google Scholar 

  2. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529–535

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Wang J, Gu BJ, Masters CL, Wang Y-J (2017) A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13(10):612–623

    CAS  PubMed  CrossRef  Google Scholar 

  4. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, Nielsen JB (2014) Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem 116:46–58

    CAS  PubMed  CrossRef  Google Scholar 

  5. Dinas PC, Koutedakis Y, Flouris AD (2011) Effects of exercise and physical activity on depression. Ir J Med Sci 180(2):319–325

    CAS  PubMed  CrossRef  Google Scholar 

  6. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, Ciret S, Gallopin T, Sauvet F (2015) Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. J Inflamm (Lond) 12:56

    CAS  CrossRef  Google Scholar 

  8. Stranahan AM, Martin B, Maudsley S (2012) Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer’s disease. Curr Alzheimer Res 9(1):86–92

    PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013:657508

    PubMed  PubMed Central  Google Scholar 

  10. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS, Lee EK, Jee YS (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365

    PubMed  CrossRef  Google Scholar 

  11. Gomez-Pinilla F, Hillman C (2013) The influence of exercise on cognitive abilities. Compr Physiol 3(1):403–428

    PubMed  PubMed Central  Google Scholar 

  12. Cassilhas RC, Tufik S, de Mello MT (2016) Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 73(5):975–983

    CAS  PubMed  CrossRef  Google Scholar 

  13. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372

    CAS  PubMed  CrossRef  Google Scholar 

  14. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55(4):412–424

    PubMed  CrossRef  Google Scholar 

  15. Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH (2015) Mitochondrial lysates induce inflammation and Alzheimer’s disease-relevant changes in microglial and neuronal cells. J Alzheimer’s Dis 45(1):305–318

    CAS  CrossRef  Google Scholar 

  16. Gholamnezhad Z, Boskabady MH, Hosseini M (2018) Effect of different loads of treadmill exercise on Th1/Th2 cytokine balance in rat splenocytes. J Appl Biomed 16(4):362–369

    CrossRef  Google Scholar 

  17. Gholamnezhad Z, Boskabady MH, Hosseini M, Sankian M, Khajavi Rad A (2014) Evaluation of immune response after moderate and overtraining exercise in wistar rat. Iran J Basic Med Sci 17(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohanpour M-A, Peeri M, Azarbayjani M-A (2017) The effects of Glycyrrhiza glabra L. extract use with aerobic training on inflammatory factors and cognitive state in elderly with mild cognitive impairment. J Herb Pharmacol 6(4):178–184

    CAS  Google Scholar 

  19. Phoemsapthawee J, Ammawat W, Leelayuwat N (2016) The benefit of arm swing exercise on cognitive performance in older women with mild cognitive impairment. J Exerc Physiol 19(6):123–136

    Google Scholar 

  20. Stigger F, Marcolino MAZ, Portela KM, Plentz RDM (2018) Effects of exercise on inflammatory, oxidative and Neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 74(5):616–624. [Epub ahead of print]

    CrossRef  CAS  Google Scholar 

  21. Liu HL, Zhao G, Cai K, Zhao HH, Shi LD (2011) Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 218(2):308–314

    PubMed  CrossRef  Google Scholar 

  22. Xiong JY, Li SC, Sun YX, Zhang XS, Dong ZZ, Zhong P, Sun XR (2015) Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation. Biol Sport 32(4):295–300

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Jack CR Jr, Holtzman DM (2013) Biomarker modeling of Alzheimer’s disease. Neuron 80(6):1347–1358

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen SH, Jen CJ, Kuo YM (2015) Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem 118:189–197

    CAS  PubMed  CrossRef  Google Scholar 

  25. Steen Jensen C, Portelius E, Siersma V, Hogh P, Wermuth L, Blennow K, Zetterberg H, Waldemar G, Gregers Hasselbalch S, Hviid Simonsen A (2016) Cerebrospinal fluid amyloid Beta and tau concentrations are not modulated by 16 weeks of moderate- to high-intensity physical exercise in patients with Alzheimer disease. Dement Geriatr Cogn Disord 42(3–4):146–158

    CAS  PubMed  CrossRef  Google Scholar 

  26. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833

    CAS  PubMed  CrossRef  Google Scholar 

  27. Song JH, Yu JT, Tan L (2015) Brain-derived Neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52(3):1477–1493

    CAS  PubMed  CrossRef  Google Scholar 

  28. Nieto-Estévez V, Defterali Ç, Vicario-Abejón C (2016) IGF-I: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci 10(52)

    Google Scholar 

  29. Annenkov A (2009) The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 40(3):195–215

    CAS  PubMed  CrossRef  Google Scholar 

  30. Jahangiri Z, Gholamnezhad Z, Hosseini M (2019) Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis 34(1):21–37

    CAS  PubMed  CrossRef  Google Scholar 

  31. Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Kim YM, Ji ES, Kim SH, Kim TW, Ko IG, Jin JJ, Kim CJ, Kim TW, Kim DH (2015) Treadmill exercise improves short-term memory by enhancing hippocampal cell proliferation in quinolinic acid-induced Huntington’s disease rats. JExerc Rehabil 11(1):5–11

    CrossRef  Google Scholar 

  33. Christie BR, Swann SE, Fox CJ, Froc D, Lieblich SE, Redila V, Webber A (2005) Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. Eur J Neurosci 21(6):1719–1726

    PubMed  CrossRef  Google Scholar 

  34. Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT, Kuo YM (2007) Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103(6):2471–2481

    CAS  PubMed  CrossRef  Google Scholar 

  35. Kim K, Sung YH, Seo JH, Lee SW, Lim BV, Lee CY, Chung YR (2015) Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats. J Exerc Rehabil 11(6):296–302

    PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Jung SY, Kim DY (2017) Treadmill exercise improves motor and memory functions in cerebral palsy rats through activation of PI3K-Akt pathway. J Exerc Rehabil 13(2):136–142

    PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Heo YM, Shin MS, Kim SH, Kim TW, Baek SB, Baek SS (2014) Treadmill exercise ameliorates disturbance of spatial learning ability in scopolamine-induced amnesia rats. J Exerc Rehabil 10(3):155–161

    PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Sim YJ (2014) Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer’s disease rats. J Exerc Rehabil 10(2):81–88

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Kim DY, Jung SY, Kim K, Kim CJ (2016) Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats. J Exerc Rehabil 12(4):276–283

    PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Shih PC, Yang YR, Wang RY (2013) Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One 8(10):e78163

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Ahn JH, Choi JH, Park JH, Kim IH, Cho JH, Lee JC, Koo HM, Hwangbo G, Yoo KY, Lee CH, Hwang IK, Cho JH, Choi SY, Kwon YG, Kim YM, Kang IJ, Won MH (2016) Long-term exercise improves memory deficits via restoration of myelin and microvessel damage, and enhancement of neurogenesis in the aged gerbil hippocampus after ischemic stroke. Neurorehabil Neural Repair 30(9):894–905

    PubMed  CrossRef  Google Scholar 

  42. Himi N, Takahashi H, Okabe N, Nakamura E, Shiromoto T, Narita K, Koga T, Miyamoto O (2016) Exercise in the early stage after stroke enhances hippocampal brain-derived Neurotrophic factor expression and memory function recovery. J Stroke Cerebrovasc Dis 25(12):2987–2994

    PubMed  CrossRef  Google Scholar 

  43. Kim TW, Sung YH (2017) Regular exercise promotes memory function and enhances hippocampal neuroplasticity in experimental autoimmune encephalomyelitis mice. Neuroscience 346:173–181

    CAS  PubMed  CrossRef  Google Scholar 

  44. Li C, Liu Y, Yin S, Lu C, Liu D, Jiang H, Pan F (2015) Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats. Behav Brain Res 288:39–49

    CAS  PubMed  CrossRef  Google Scholar 

  45. Hakansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, Kivipelto M, Winblad B, Granholm AC, Mohammed AK (2017) BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: associations with working memory function. J Alzheimers Dis 55(2):645–657

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Maass A, Duzel S, Brigadski T, Goerke M, Becke A, Sobieray U, Neumann K, Lovden M, Lindenberger U, Backman L, Braun-Dullaeus R, Ahrens D, Heinze HJ, Muller NG, Lessmann V, Sendtner M, Duzel E (2016) Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. NeuroImage 131:142–154

    CAS  PubMed  CrossRef  Google Scholar 

  47. Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, Volker K, Ho HV, Mooren F, Knecht S, Floel A (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32(7):1304–1319

    CAS  PubMed  CrossRef  Google Scholar 

  48. Wagner G, Herbsleb M, de la Cruz F, Schumann A, Kohler S, Puta C, Gabriel HW, Reichenbach JR, Bar KJ (2017) Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention. Biol Psychol 124:65–78

    PubMed  CrossRef  Google Scholar 

  49. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Floel A, Ruscheweyh R, Kruger K, Willemer C, Winter B, Volker K, Lohmann H, Zitzmann M, Mooren F, Breitenstein C, Knecht S (2010) Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? NeuroImage 49(3):2756–2763

    CAS  PubMed  CrossRef  Google Scholar 

  51. Heisz JJ, Clark IB, Bonin K, Paolucci EM, Michalski B, Becker S, Fahnestock M (2017) The effects of physical exercise and cognitive training on memory and Neurotrophic factors. J Cogn Neurosci 29(11):1895–1907

    PubMed  CrossRef  Google Scholar 

  52. Segal SK, Cotman CW, Cahill LF (2012) Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J Alzheimers Dis 32(4):1011–1018

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O’Brien R (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40

    CAS  PubMed  CrossRef  Google Scholar 

  54. Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Espuch-Oliver A, Robles-Gonzalez L, Navarro-Lomas G, de Haro T, Femia P, Castillo MJ, Gutierrez A (2018) Exercise training as S-Klotho protein stimulator in sedentary healthy adults: rationale, design, and methodology. Contemp Clin Trials Commun 11:10–19

    PubMed  PubMed Central  CrossRef  Google Scholar 

  55. Obisesan TO, Ntekim O, Ngwa JS, Allard JS, Brewer JB, Fungwe TV (2017) Exercise training-induced changes on positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose -[18F] FDG in mild cognitively impaired older african americans: gems study. Alzheimers Dement 13(7):P1566

    CrossRef  Google Scholar 

  56. Shimada H, Ishii K, Makizako H, Ishiwata K, Oda K, Suzukawa M (2017) Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J Neuroeng Rehabil 14(1):50

    PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Smith JC, Nielson KA, Antuono P, Lyons J-A, Hanson RJ, Butts AM, Hantke NC, Verber MD (2013) Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. J Alzheimers Dis 37(1):197–215

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Makizako H, Liu-Ambrose T, Shimada H, Doi T, Park H, Tsutsumimoto K, Uemura K, Suzuki T (2015) Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. J Gerontol A Biol Sci Med Sci 70(4):480–486

    CAS  PubMed  CrossRef  Google Scholar 

  59. Ding K, Tarumi T, Zhu DC, Tseng BY, Thomas BP, Turner M, Repshas J, Kerwin DR, Womack KB, Lu H, Cullum CM, Zhang R (2018) Cardiorespiratory fitness and White matter neuronal fiber integrity in mild cognitive impairment. J Alzheimers Dis 61(2):729–739

    PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Hayes SM, Alosco ML, Hayes JP, Cadden M, Peterson KM, Allsup K, Forman DE, Sperling RA, Verfaellie M (2015) Physical activity is positively associated with episodic memory in aging. J Int Neuropsychol Soc 21(10):780–790

    PubMed  PubMed Central  CrossRef  Google Scholar 

  61. van der Kleij LA, Petersen ET, Siebner HR, Hendrikse J, Frederiksen KS, Sobol NA, Hasselbalch SG, Garde E (2018) The effect of physical exercise on cerebral blood flow in Alzheimer’s disease. Neuroimage Clin 20:650–654

    PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Xu W, Wang HF, Wan Y, Tan CC, Yu JT, Tan L (2017) Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open 7(10):e014706

    PubMed  PubMed Central  CrossRef  Google Scholar 

  63. Guure CB, Ibrahim NA, Adam MB, Said SM (2017) Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed Res Int 2017:9016924

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  64. Zotcheva E, Selbaek G, Bjertness E, Ernstsen L, Strand BH (2018) Leisure-time physical activity is associated with reduced risk of dementia-related mortality in adults with and without psychological distress: the cohort of Norway. Front Aging Neurosci 10:151

    PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Krell-Roesch J, Feder NT, Roberts RO, Mielke MM, Christianson TJ, Knopman DS, Petersen RC, Geda YE (2018) Leisure-time physical activity and the risk of incident dementia: the Mayo Clinic study of aging. J Alzheimers Dis 63(1):149–155

    PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Zieschang T, Schwenk M, Becker C, Uhlmann L, Oster P, Hauer K (2017) Falls and physical activity in persons with mild to moderate dementia participating in an intensive motor training: randomized controlled trial. Alzheimer Dis Assoc Disord 31(4):307–314

    PubMed  CrossRef  Google Scholar 

  67. Goncalves AC, Cruz J, Marques A, Demain S, Samuel D (2018) Evaluating physical activity in dementia: a systematic review of outcomes to inform the development of a core outcome set. Age Ageing 47(1):34–41

    PubMed  CrossRef  Google Scholar 

  68. Bartfay E, Stewart P, Bartfay W, Papaconstantinou E (2019) Is there an association between physical activity and sleep in community-dwelling persons with dementia: an exploratory study using self-reported measures? Healthc (Basel, Switzerland) 7(1) pii: E6

    Google Scholar 

  69. Ojagbemi A, Akin-Ojagbemi N (2019) Exercise and quality of life in dementia: asystematic review and meta-analysis of randomized controlled trials. J Appl Gerontol 38(1):27–48

    PubMed  CrossRef  Google Scholar 

  70. McGough EL, Lin SY, Belza B, Becofsky KM, Jones DL, Liu M, Wilcox S, Logsdon RG (2019) A scoping review of physical performance outcome measures used in exercise interventions for older adults with Alzheimer disease and related dementias. J Geriatr Phys Ther 42(1):28–47

    PubMed  CrossRef  Google Scholar 

  71. Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA (2011) Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 7(3):300–308

    PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T, Nouchi H, Kawashima R (2014) Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age (Dordr) 36(2):787–799

    CAS  CrossRef  Google Scholar 

  73. Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC (2019) The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers Res Ther 11(1):3

    PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Ohman H, Savikko N, Strandberg TE, Kautiainen H, Raivio MM, Laakkonen ML, Tilvis R, Pitkala KH (2016) Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J Am Geriatr Soc 64(4):731–738

    PubMed  CrossRef  Google Scholar 

  75. Ma DY, Wong CHY, Leung GTY, Fung AWT, Chan WC, Lam LCW (2017) Physical exercise helped to maintain and restore functioning in Chinese older adults with mild cognitive impairment: a 5-year prospective study of the Hong Kong memory and ageing prospective study (HK-MAPS). J Am Med Dir Assoc 18(4):306–311

    PubMed  CrossRef  Google Scholar 

  76. Guitar NA, Connelly DM, Nagamatsu LS, Orange JB, Muir-Hunter SW (2018) The effects of physical exercise on executive function in community-dwelling older adults living with Alzheimer’s-type dementia: a systematic review. Ageing Res Rev 47:159–167

    PubMed  CrossRef  Google Scholar 

  77. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B (2018) Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 52(3):154–160

    PubMed  CrossRef  Google Scholar 

  78. Hsiao CY, Tsai AY, Chen KM, Yao CT (2019) Applicability of an elastic band exercise program to wheelchair-bound older adults with and without dementia: a self-rating survey. Geriatr Gerontol Int 19(2):103–107

    PubMed  Google Scholar 

  79. Dawson N, Judge KS, Gerhart H (2019) Improved functional performance in individuals with dementia after a moderate-intensity home-based exercise program: a randomized controlled trial. J Geriatr Phys Ther. (2001 42(1):18–27

    PubMed  CrossRef  Google Scholar 

  80. Frith E, Sng E, Loprinzi PD (2017) Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur J Neurosci 46(10):2557–2564

    PubMed  CrossRef  Google Scholar 

  81. Alves CR, Tessaro VH, Teixeira LA, Murakava K, Roschel H, Gualano B, Takito MY (2014) Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept Mot Skills 118(1):63–72

    PubMed  CrossRef  Google Scholar 

  82. Iuliano E, Fiorilli G, Aquino G, Di Costanzo A, Calcagno G, di Cagno A (2017) Twelve-week exercise influences memory complaint but not memory performance in older adults: a randomized controlled study. J Aging Phys Act 25(4):612–620

    PubMed  CrossRef  Google Scholar 

  83. McNerney MW, Radvansky GA (2015) Mind racing: the influence of exercise on long-term memory consolidation. Memory (Hove, England) 23(8):1140–1151

    CrossRef  Google Scholar 

  84. McEwan D, Harden SM, Zumbo BD, Sylvester BD, Kaulius M, Ruissen GR, Dowd AJ, Beauchamp MR (2016) The effectiveness of multi-component goal setting interventions for changing physical activity behaviour: a systematic review and meta-analysis. Health Psychol Rev 10(1):67–88

    PubMed  CrossRef  Google Scholar 

  85. French DP, Olander EK, Chisholm A, Mc Sharry J (2014) Which behaviour change techniques are most effective at increasing older adults’ self-efficacy and physical activity behaviour? A systematic review. Ann Behav Med 48(2):225–234

    PubMed  CrossRef  Google Scholar 

  86. Nyman SR, Adamczewska N, Howlett N (2018) Systematic review of behaviour change techniques to promote participation in physical activity among people with dementia. Br J Health Psychol 23(1):148–170

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

Competing financial interests: The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Gholamnezhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gholamnezhad, Z., Boskabady, M.H., Jahangiri, Z. (2020). Exercise and Dementia. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_20

Download citation