Skip to main content

Exercise and Cardiovascular Protection

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

Accumulating evidence has demonstrated that exercise training not only reduces cardiovascular disease risk but also provides direct endogenous cardiovascular protection. The mechanisms that have been proposed to be responsible for exercise-induced cardioprotection include intrinsic myocardial changes such as increased cytosolic antioxidant capacity and altered mitochondrial phenotype, myokine-mediated metabolic and anti-inflammatory effects in the cardiovascular system, and systemic effects on the cardiovascular system via interorgan cross talk. There remains much to be elucidated in the mechanisms for exercise-afforded cardioprotection. This chapter reviews exercise-induced acute and chronic responses in cardiovascular system, the epidemiological evidence of exercise training and cardiorespiratory fitness in the primary and secondary prevention of cardiovascular diseases, and the current understanding of the mechanisms of exercise-induced cardiovascular protective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE (2004) Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med 351(26):2694–2703

    CAS  PubMed  Google Scholar 

  2. Barengo NC, Hu G, Lakka TA, Pekkarinen H, Nissinen A, Tuomilehto J (2004) Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. Eur Heart J 25(24):2204–2211

    PubMed  Google Scholar 

  3. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O'Keefe JH, Milani RV, Blair SN, Church TS (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 77(2):281–292

    PubMed  PubMed Central  Google Scholar 

  4. Hu G, Eriksson J, Barengo NC, Lakka TA, Valle TT, Nissinen A, Jousilahti P, Tuomilehto J (2004) Occupational, commuting, and leisure-time physical activity in relation to total and cardiovascular mortality among Finnish subjects with type 2 diabetes. Circulation 110(6):666–673

    PubMed  Google Scholar 

  5. Karsenty G, Olson EN (2016) Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164(6):1248–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pedersen BK (2019) Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 15(7):383–392

    PubMed  Google Scholar 

  7. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O'Keefe JH, Milani RV, Blair SN (2015) Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res 117(2):207–219

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos-Parker JR, LaRocca TJ, Seals DR (2014) Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ 38(4):296–307

    PubMed  PubMed Central  Google Scholar 

  9. Vaitkevicius PV, Fleg JL, Engel JH, O'Connor FC, Wright JG, Lakatta LE, Yin FC, Lakatta EG (1993) Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88(41):1456–1462

    CAS  PubMed  Google Scholar 

  10. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108(5):530–535

    PubMed  Google Scholar 

  11. Dawson EA, Green DJ, Cable NT, Thijssen DH (2013) Effects of acute exercise on flow-mediated dilatation in healthy humans. J Appl Physiol 115(11):1589–1598

    PubMed  Google Scholar 

  12. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342(7):454–460

    CAS  PubMed  Google Scholar 

  13. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ, Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisloff U (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134(24):e653–e699

    PubMed  Google Scholar 

  14. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, Franklin BA, Gulati M, Lavie CJ, Myers J, Patel MJ, Pina IL, Weintraub WS, Williams MA (2013) The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation 127(5):652–662

    PubMed  Google Scholar 

  15. DeFina LF, Haskell WL, Willis BL, Barlow CE, Finley CE, Levine BD, Cooper KH (2015) Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis 57(4):324–329

    PubMed  Google Scholar 

  16. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. J Am Med Assoc 301(19):2024–2035

    CAS  Google Scholar 

  17. Berry JD, Willis B, Gupta S, Barlow CE, Lakoski SG, Khera A, Rohatgi A, de Lemos JA, Haskell W, Lloyd-Jones DM (2011) Lifetime risks for cardiovascular disease mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men. The Cooper Center Longitudinal Study. J Am Coll Cardiol 57(15):1604–1610

    PubMed  PubMed Central  Google Scholar 

  18. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC, Kohl HR, Blair SN (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124(23):2483–2490

    PubMed  PubMed Central  Google Scholar 

  19. Artero EG, Lee DC, Lavie CJ, Espana-Romero V, Sui X, Church TS, Blair SN (2012) Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev 32(6):351–358

    PubMed  PubMed Central  Google Scholar 

  20. Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol 587(23):5551–5558

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14(1):5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng C, Liu Z (2015) Vascular function, insulin action, and exercise: an intricate interplay. Trends Endocrinol Metab 26(6):297–304

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Webb DR, Khunti K, Silverman R, Gray LJ, Srinivasan B, Lacy PS, Williams B, Davies MJ (2010) Impact of metabolic indices on central artery stiffness: independent association of insulin resistance and glucose with aortic pulse wave velocity. Diabetologia 53(6):1190–1198

    CAS  PubMed  Google Scholar 

  24. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94(3):1172–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH (2011) Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda) 26(3):132–145

    PubMed  Google Scholar 

  26. Newsom SA, Everett AC, Hinko A, Horowitz JF (2013) A single session of low-intensity exercise is sufficient to enhance insulin sensitivity into the next day in obese adults. Diabetes Care 36(9):2516–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lavie CJ, Milani RV (1994) Effects of cardiac rehabilitation and exercise training on low-density lipoprotein cholesterol in patients with hypertriglyceridemia and coronary artery disease. Am J Cardiol 74(12):1192–1195

    CAS  PubMed  Google Scholar 

  28. Lavie CJ, Milani RV (1996) Effects of nonpharmacologic therapy with cardiac rehabilitation and exercise training in patients with low levels of high-density lipoprotein cholesterol. Am J Cardiol 78(11):1286–1289

    CAS  PubMed  Google Scholar 

  29. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167(10):999–1008

    CAS  PubMed  Google Scholar 

  30. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD (2001) Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 31(15):1033–1062

    CAS  PubMed  Google Scholar 

  31. Law MR, Wald NJ, Thompson SG (1994) By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? Br Med J 308(6925):367–372

    CAS  Google Scholar 

  32. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    CAS  PubMed  Google Scholar 

  33. Milani RV, Lavie CJ, Mehra MR (2004) Reduction in C-reactive protein through cardiac rehabilitation and exercise training. J Am Coll Cardiol 43(6):1056–1061

    CAS  PubMed  Google Scholar 

  34. Milani RV, Lavie CJ (2003) Prevalence and profile of metabolic syndrome in patients following acute coronary events and effects of therapeutic lifestyle change with cardiac rehabilitation. Am J Cardiol 92(1):50–54

    PubMed  Google Scholar 

  35. Mathur N, Pedersen BK (2008) Exercise as a mean to control low-grade systemic inflammation. Mediat Inflamm 2008:109502

    Google Scholar 

  36. Seals DR, Dinenno FA (2004) Collateral damage: cardiovascular consequences of chronic sympathetic activation with human aging. Am J Phys Heart Circ Phys 287(5):H1895–H1905

    CAS  Google Scholar 

  37. Lind L, Lithell H (1993) Decreased peripheral blood flow in the pathogenesis of the metabolic syndrome comprising hypertension, hyperlipidemia, and hyperinsulinemia. Am Heart J 125(52):1494–1497

    CAS  PubMed  Google Scholar 

  38. Baron AD, Laakso M, Brechtel G, Hoit B, Watt C, Edelman SV (1990) Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity. J Clin Endocrinol Metab 70(6):1525–1533

    CAS  PubMed  Google Scholar 

  39. Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL (2010) Improvements in heart rate variability with exercise therapy. Can J Cardiol 26(6):303–312

    PubMed  PubMed Central  Google Scholar 

  40. Monahan KD, Dinenno FA, Tanaka H, Clevenger CM, DeSouza CA, Seals DR (2000) Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol 529(Pt 1):263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolan RP, Jong P, Barry-Bianchi SM, Tanaka TH, Floras JS (2008) Effects of drug, biobehavioral and exercise therapies on heart rate variability in coronary artery disease: a systematic review. Eur J Cardiovasc Prev Rehabil 15(4):386–396

    PubMed  Google Scholar 

  42. Billman GE (2009) Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Phys Heart Circ Phys 297(4):H1171–H1193

    CAS  Google Scholar 

  43. Lichtman JH, Bigger JJ, Blumenthal JA, Frasure-Smith N, Kaufmann PG, Lesperance F, Mark DB, Sheps DS, Taylor CB, Froelicher ES (2008) Depression and coronary heart disease: recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation 118(17):1768–1775

    PubMed  Google Scholar 

  44. Lavie CJ, Milani RV, O'Keefe JH, Lavie TJ (2011) Impact of exercise training on psychological risk factors. Prog Cardiovasc Dis 53(6):464–470

    PubMed  Google Scholar 

  45. Lavie CJ, Milani RV (2004) Prevalence of anxiety in coronary patients with improvement following cardiac rehabilitation and exercise training. Am J Cardiol 93(3):336–339

    PubMed  Google Scholar 

  46. Lavie CJ, Milani RV (2006) Adverse psychological and coronary risk profiles in young patients with coronary artery disease and benefits of formal cardiac rehabilitation. Arch Intern Med 166(17):1878–1883

    PubMed  Google Scholar 

  47. Milani RV, Lavie CJ (2007) Impact of cardiac rehabilitation on depression and its associated mortality. Am J Med 120(9):799–806

    PubMed  Google Scholar 

  48. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuroreport 14(17):2209–2211

    CAS  PubMed  Google Scholar 

  49. Moreno PR, Sanz J, Fuster V (2009) Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. J Am Coll Cardiol 53(25):2315–2323

    CAS  PubMed  Google Scholar 

  50. Bakogiannis C, Tousoulis D, Androulakis E, Briasoulis A, Papageorgiou N, Vogiatzi G, Kampoli AM, Charakida M, Siasos G, Latsios G, Antoniades C, Stefanadis C (2012) Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr Med Chem 19(16):2597–2604

    CAS  PubMed  Google Scholar 

  51. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109(2):220–226

    CAS  PubMed  Google Scholar 

  52. Hambrecht R, Walther C, Mobius-Winkler S, Gielen S, Linke A, Conradi K, Erbs S, Kluge R, Kendziorra K, Sabri O, Sick P, Schuler G (2004) Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation 109(11):1371–1378

    PubMed  Google Scholar 

  53. Schmidt A, Bierwirth S, Weber S, Platen P, Schinkothe T, Bloch W (2009) Short intensive exercise increases the migratory activity of mesenchymal stem cells. Br J Sports Med 43(3):195–198

    CAS  PubMed  Google Scholar 

  54. Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12(9):504–517

    CAS  PubMed  Google Scholar 

  55. Goldstein MS (1961) Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10:232–234

    CAS  PubMed  Google Scholar 

  56. Little JP, Safdar A (2015) Adipose-brain crosstalk: do adipokines have a role in neuroprotection? Neural Regen Res 10(9):1381–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214(2):337–346

    CAS  PubMed  Google Scholar 

  58. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    CAS  PubMed  Google Scholar 

  59. Mooren FC, Viereck J, Kruger K, Thum T (2014) Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol 306(4):H557–H563

    CAS  PubMed  Google Scholar 

  60. Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, Wang L, Gao F (2019) Longterm exercise-derived Exosomal miR-342-5p. Circ Res 124(9):1386–1400

    CAS  PubMed  Google Scholar 

  61. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, McCabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA, Wang TJ, Sabatine MS, Clish CB, Gerszten RE (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2(33):33r–37r

    Google Scholar 

  62. Bloomer RJ, Davis PG, Consitt LA, Wideman L (2007) Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int J Sports Med 28(1):21–25

    CAS  PubMed  Google Scholar 

  63. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102(6):2389–2397

    CAS  PubMed  Google Scholar 

  64. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK (2003) Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 34(7):800–809

    CAS  PubMed  Google Scholar 

  66. Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Vina J (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87(1):142–149

    CAS  PubMed  Google Scholar 

  67. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San PJ, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jaattela M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Munz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bravo-San PJ, Kroemer G, Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120(11):1812–1824

    Google Scholar 

  69. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Campos JC, Queliconi BB, Bozi L, Bechara L, Dourado P, Andres AM, Jannig PR, Gomes K, Zambelli VO, Rocha-Resende C, Guatimosim S, Brum PC, Mochly-Rosen D, Gottlieb RA, Kowaltowski AJ, Ferreira J (2017) Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 13(8):1304–1317

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (81670253 to F Gao) and Major Basic Science Program of Shaanxi Provincial Natural Science Foundation of China (2016ZDJC-17 to F Gao).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Li, J., Gao, F. (2020). Exercise and Cardiovascular Protection. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_14

Download citation

Publish with us

Policies and ethics