Skip to main content

Real-Time Integrity Monitoring for Civil Aviation with Improved Navigation Performance

  • Conference paper
  • First Online:
Proceedings of the International Conference on Aerospace System Science and Engineering 2019 (ICASSE 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 622))

Included in the following conference series:

  • 822 Accesses

Abstract

With the worldwide development in the past decades, multi-constellation Global Navigation Satellite System (GNSS) are able to provide consistent and reliable navigation services today, which are expected to bring significant performance improvement to civil aviation in the future. For the GNSS-based aircraft navigation, meeting the integrity and continuity requirements is of the most importance. In the currently proposed baseline Advanced Receiver Autonomous Integrity Monitoring (ARAIM) user algorithm, the integrity risk is evaluated using a conservative upper bound. Despite its computational efficiency, this bound is not tight enough, which may lead to overly conservative results. Operationally, the system may incorrectly alert the user, which severely impacts navigation continuity. Therefore, in this work, we develop a new method to tightly bound the integrity risk and establish a multi-constellation ARAIM test platform to validate the theory. The new approach takes advantage of the independence between position estimation error and detection test statistics and expresses the integrity risk evaluation as a convex optimization problem. It is shown that the global maximum of the objective function is a tight bound on integrity risk, and it can be efficiently computed using an numerical method. Other than the theoretical derivations, another major contribution of this work is prototyping the ARAIM user segment in the Guidance, Navigation, and Control (GNC) laboratory at Shanghai Jiao Tong University. Both of the ARAIM Multiple Hypothesis Solution Separation (MHSS) algorithm and the new approach are incorporated into the prototype, and the real-time integrity monitoring results are visually displayed in terms of horizontal and vertical protection levels, effective monitoring threshold, integrity risk, etc. As compared to the existing MHSS theory, the results suggest that the navigation service availability can be noticeably improved using the proposed method, especially when the constellations are subject to larger ranging errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed AH, Schwarz KP (1999) Adaptive Kalman filtering for INS/GPS. J Geodesy 73(4):193–203

    Article  ADS  Google Scholar 

  2. Alexander I (1993) Perspective/navigation-the global positioning system. In: IEEE spectrum, vol 30, no 12. IEEE pp 36–38

    Google Scholar 

  3. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer

    Google Scholar 

  4. International Civil Aviation Organization (ICAO), Annex 10:Aeronautical Telecommunications. Volume 1: (Radio Navigation Aids), Amendment 84, published 20 July 2009, effective 19 November 2009, GNSS standards and recommended practices (SARPs) are contained in Section 3.7 and subsections, Appendix B, and Attachment D

    Google Scholar 

  5. Zhai Y (2018) Ensuring navigation integrity and continuity using multi-constellation GNSS. Ph.D. dissertation, Illinois Institute of Technology, Chicago, IL

    Google Scholar 

  6. Parkinson B, Axelrad P (1988) Autonomous GPS integrity monitoring using the pseudorange residual. Navigation 35(2):255–274

    Article  Google Scholar 

  7. Patrick Y, Collins R (2006) RAIM-FDE revisited: a new breakthrough in availability performance with nioRAIM (novel integrity-optimized RAIM). In: Proceedings of the 18th international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS), vol 53, no 1, pp 41-51

    Google Scholar 

  8. Ivanov V, Gefan G, Gorbachev O (2011) Global empirical modelling of the total electron content of the ionosphere for satellite radio navigation systems. J Atmos Solar-Terrestrial Phys 73(13):1703–1707

    Article  ADS  Google Scholar 

  9. El-Mowafy A, Yang C (2016) Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data. Adv Space Res 57(2):659–670

    Article  ADS  Google Scholar 

  10. Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 5:8328

    Article  ADS  Google Scholar 

  11. Aleshkin AP, Myslivtsev TO, Nikiforov SV, Savochkin PV, Sakhno IV, Semenov AA, Troitskii BV (2019) Calculation of navigation corrections for a single-frequency GNSS receiver based on satellite radio occultation data. Gyroscopy Navig 10(1):15–20

    Article  Google Scholar 

  12. Pan W, Zhan X, Zhang X, Liu B (2019) GNSS/INS integrity monitoring considering nominal bias for civil aircraft CAT-I approach. In: AIAA Scitech 2019 forum, vol 0361

    Google Scholar 

  13. Blanch J, Walker T, Enge P, Lee Y, Pervan B, Rippl M, Spletter A, Kropp V (2015) Baseline advanced RAIM user algorithm and possible improvements. IEEE Trans Aerosp Electron Syst 51(1):713–732

    Article  ADS  Google Scholar 

  14. Cassel R (2017) Real-time ARAIM using GPS, GLONASS, and Galileo. Master thesis, Illinois Institute of Technology

    Google Scholar 

  15. EU-U.S. Cooperation on Satellite Navigation Working Group C-ARAIM Technical Subgroup (2016) Milestone 3 report. Final version

    Google Scholar 

  16. Zhai Y, Joerger M, Pervan B (2015) Continuity and availability in dual-frequency multi-constellation ARAIM. In: Proceedings of the 28th international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS)

    Google Scholar 

  17. Joerger M, Chan F, Pervan B (2014) Solution separation versus residual-based RAIM. NAVIGATION: J Inst Navig 61(4):273–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingqun Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, J., Zhan, X., Zhai, Y. (2020). Real-Time Integrity Monitoring for Civil Aviation with Improved Navigation Performance. In: Jing, Z. (eds) Proceedings of the International Conference on Aerospace System Science and Engineering 2019. ICASSE 2019. Lecture Notes in Electrical Engineering, vol 622. Springer, Singapore. https://doi.org/10.1007/978-981-15-1773-0_9

Download citation

Publish with us

Policies and ethics