Skip to main content

Improving the Cooling Air Supply System for the HPT Blades of High-Temperature GTE

  • Conference paper
  • First Online:
Proceedings of the International Conference on Aerospace System Science and Engineering 2019 (ICASSE 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 622))

Included in the following conference series:

Abstract

This paper describes the results of studies of the system for supplying cooling air to the HPT of high-temperature aviation bypass GTE. In the cooling cavity of the blade, a dividing partition is installed, which allows cold air to be supplied to the front cooling cavity of the blade, taken out of the high-pressure compressor, and to the rear cavity—air with lower pressure and temperature, taken from the intermediate stage of the compressor. Air cooled by the working blades of a GTE is fed into the tubes of a U-shaped air-to-air heat exchanger blown with air from the outer contour of this GTE. The results of the studies showed that the temperature of the air taken from the compressor in the AtA HE can be reduced by 110°–240°, depending on the geometric dimensions of the tubes and the configuration of the AtA HE. Problems to be solved: minimization of pressure losses in the external circuit of a gas turbine engine, development of methods for constructively increasing the intensity of air temperature reduction in tubular AtA HE and schemes for the optimal supply of this air to the inlet of cooled propeller blades. A tubular row-type AtA HE was designed, with micro-heat transfer intensifiers installed on the inner surface of small-sized thin-walled tubes, cylindrical or oval, into which cooled air drawn after the compressor or another, colder, but with lower pressure from its intermediate stage, is supplied. The system of cooling air cutoff, in the channels for supplying the rear cavity of the working blade of the turboprop engine on the cruising mode of GTE operation, implemented in the blades of the turbine rotor with a vortex matrix, is considered. In conclusion, the work presents recommendations on the design methodology of these units in modern and future aviation gas turbine engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GTE:

Gas turbine engine

LPT, HPT:

High-/low-pressure turbine

LPC, HPC:

High-/low-pressure compressor

ND:

Nozzle diaphragm

RB:

Rotor blade

AtA HE:

Air-to-air heat exchanger

ALV:

Auto-lock valve of cooling air

BP/BPR:

Bypass/bypass ratio

A/B:

Afterburner

References

  1. Nesterenko VG, Nesterenko VV, Asadollahi Gokhiekh A et al (2014) Research and analysis of the efficiency of air cooling systems for blades of high-pressure turbines of gas turbine engines. Aerosp Eng Technol 7:83–93

    Google Scholar 

  2. Hronin DV (1989) Design and design of aircraft gas turbine engines: textbook. Mashinostroenie, 368 p

    Google Scholar 

  3. Revant Reddy A, Nesterenko VG (2018) Constructive methods for improving the critical nodes of the cooling system of modern high-temperature high-pressure turbine of aviation gas turbine engines. Sci Tech Bull Volga Reg 5:73–77

    Google Scholar 

  4. Kalinin EK (1998) Effective heat exchange surfaces. Energoatomizdat, 408 C

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Minchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minchenko, A., Nesterenko, V., Malinovsky, I., Revanth Reddy, A. (2020). Improving the Cooling Air Supply System for the HPT Blades of High-Temperature GTE. In: Jing, Z. (eds) Proceedings of the International Conference on Aerospace System Science and Engineering 2019. ICASSE 2019. Lecture Notes in Electrical Engineering, vol 622. Springer, Singapore. https://doi.org/10.1007/978-981-15-1773-0_5

Download citation

Publish with us

Policies and ethics