Skip to main content

Using a Spatial Farm Microsimulation Model for Australia to Estimate the Impact of an External Shock on Farmer Incomes

  • Conference paper
  • First Online:
Statistics for Data Science and Policy Analysis

Abstract

A greater uncertainty in climate conditions in Australia and external price shocks in commodity prices has posed a real question for communities on the impact of these external factors on farmers. Spatial microsimulation models are ideal for understanding the spatial impacts of various external shocks, including changes in commodity prices; changes in climate conditions; and changes in Government policy. This study demonstrates the building of a spatial microsimulation model to identify farmer financial stress in the Australian State of Victoria, and then shows how this model can be used to estimate the impact of an external shock such as a drop in the price of milk. The model is estimated for the Australian State of Victoria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABS.: Agricultural Commodities, Australia, 2010–11, Cat. No. 7121.0. Australian Bureau of Statistics, Canberra (2012)

    Google Scholar 

  2. ABS.: Australian Statistical Geography Standard (ASGS): Volume 1 – Main Structure and Greater Capital City Statistical Areas, July 2016, Cat. No. 1270.0.55.001. Australian Bureau of Statistics, Canberra (2016)

    Google Scholar 

  3. Anderson, B.: Creating small area income deprivation estimates for Wales: spatial microsimulation modelling. Chimera Working Paper. 11, (2007)

    Google Scholar 

  4. Akande, O., Li, F., Reiter, J.: An empirical comparison of multiple imputation methods for categorical data. Am. Stat. 71(2), 162–170 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ballas, D., Clarke, G.P., Wiemers, E.: Building a dynamic spatial microsimulation model for Ireland. Popul. Space Place. 11(3), 157–172 (2005). https://doi.org/10.1002/psp.359

    Article  Google Scholar 

  6. Ballas, D., Clarke, G.P., Wiemers, E.: Spatial microsimulation for rural policy analysis in Ireland: the implications of CAP reforms for the national spatial strategy. J. Rural. Stud. 22(3), 367–378 (2006)

    Article  Google Scholar 

  7. Botterill, L.: Responding to farm poverty in Australia. Aust. J. Polit. Sci. 42(1), 33–46 (2007). https://doi.org/10.1080/10361140601158534

    Article  Google Scholar 

  8. Botterill, L.C., Chapman, B.: A revenue contingent loan instrument for agricultural credit with particular reference to drought relief. Aust. J. Labour Econ. 12(2), 181 (2009)

    Google Scholar 

  9. Buddelmeyer, H., Hérault, N., Kalb, G., de Jong, M.V.Z.: Linking a microsimulation model to a dynamic cge model: climate change mitigation policies and income distribution in Australia. International Journal of Microsimulation. 5(2), 40–58 (2012)

    Google Scholar 

  10. Cockburn, J. (2006). Trade liberalisation and poverty in Nepal: a computable general equilibrium micro-simulation analysis. In Globalisation and Poverty (pp. 189–212). Routledge

    Google Scholar 

  11. Edwards, K.L., Tanton, R.: Spatial Microsimulation: a Reference Guide for Users. Springer, London (2013)

    Google Scholar 

  12. Harding, A., Lloyd, R., Greenwell, H.: Financial Disadvantage in Australia 1990 to 2000: The Persistence of Poverty in a Decade of Growth. Canberra (2000)

    Google Scholar 

  13. Harding, A., Vidyattama, Y., Tanton, R.: Demographic change and the needs-based planning of government services: projecting small area populations using spatial microsimulation. J. Popul. Res. 28(2–3), (2011). https://doi.org/10.1007/s12546-011-9061-6

  14. Hopkins, J. W., Hanson, K., Somwaru, A., & Burfisher, M. E. (2003). Allocation effects of policy reform: a micro-simulation of macro-model results for the United States. (No. 1225-2016-98637)

    Google Scholar 

  15. Hynes, S., Farrelly, N., Murphy, E., O’Donoghue, C.: Modelling habitat conservation and participation in agri-environmental schemes: a spatial microsimulation approach. Ecol. Econ. 66(2–3), 258–269 (2008)

    Article  Google Scholar 

  16. Hynes, S., O’Donoghue, C., Morrissey, K., Clarke, G.: A spatial micro-simulation analysis of methane emissions from Irish agriculture. Ecol. Complex. 6(2), 135–146 (2009). https://doi.org/10.1016/j.ecocom.2008.10.014

    Article  Google Scholar 

  17. Iacus, S.M., Porro, G.: Missing data imputation, matching and other applications of random recursive partitioning. Computational statistics & data analysis. 52(2), 773–789 (2007)

    Article  MathSciNet  Google Scholar 

  18. Keeney, R. (2009). Transfer Efficiency and Distributional Impacts of US Farm Support: Evidence from a Macro–Micro Simulation

    Google Scholar 

  19. Kokic, P., Chambers, R., Beare, S.: Microsimulation of business performance. Int. Stat. Rev. 68(3), 259–275 (2000)

    Article  Google Scholar 

  20. Kruseman, G., Blokland, P.W., Bouma, F., Luesink, H., Mokveld, L., Vrolijk, H.: Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture. In presentation at the 107th EAAE Seminar “Modelling of Agricultural and Rural Development Policies”, vol. 29. Sevilla (2008, January)

    Google Scholar 

  21. Leyk, S., Nagle, N.N., Buttenfield, B.P.: Maximum entropy dasymetric modeling for demographic small area estimation. Geogr. Anal. 45(3), 285–306 (2013)

    Article  Google Scholar 

  22. Li, J., O’Donoghue, C., Dekkers, G.: Dynamic models. In: Handbook of Microsimulation Modelling, pp. 305–343. Bingley, Emerald (2014). https://doi.org/10.1108/S0573-855520140000293009

  23. Lockhart, J., Donaghy, D., Gow, H.: Milk Price Cuts Reflect the Reality of Sweeping Changes in Global Dairy Market. http://theconversation.com/milk-price-cuts-reflect-the-reality-of-sweeping-changes-in-global-dairy-market-59251 (2016)

  24. Lymer, S., Brown, L., Yap, M., Harding, A.: 2001 regional disability estimates for New South Wales, Australia, using spatial microsimulation. Appl. Spat. Anal. Policy. 1(2), 99–116 (2008)

    Article  Google Scholar 

  25. Merz, J.: Microsimulation—a survey of principles, developments and applications. Int. J. Forecast. 7(1), 77–104 (1991)

    Article  Google Scholar 

  26. Menon, M., Perali, F., Salvioni, C.: Microsimulation of the distributional impact of reformed farm support. International Conference Agricultural Policy Reform and the WTO: Where Are We Heading? Capri (Italy), June 23–26 (2003)

    Google Scholar 

  27. Miranti, R., McNamara, J., Tanton, R., Harding, A.: Poverty at the local level: national and small area poverty estimates by family type for Australia in 2006. Appl. Spat. Anal. Policy. 4(3), 145–171 (2011)

    Article  Google Scholar 

  28. Murphy, G., Hynes, S., Murphy, E., O’Donoghue, C., Green, S.: Assessing the compatibility of farmland biodiversity and habitats to the specifications of agri-environmental schemes using a multinomial logit approach. Ecol. Econ. 71, 111–121 (2011)

    Article  Google Scholar 

  29. Orcutt, G.H.: Simulation of economic systems. Am. Econ. Rev. 50(5), 894–907 (1960)

    Google Scholar 

  30. Nepal, B., Tanton, R., Harding, A.: Measuring housing stress: how much do definitions matter? Urban Policy Res. 28(2), 211–224 (2010)

    Article  Google Scholar 

  31. Procter, K.L., Clarke, G.P., Ransley, J.K., Cade, J.: Micro-level analysis of childhood obesity, diet, physical activity, residential socioeconomic and social capital variables: where are the obesogenic environments in Leeds? Area. 40(3), 323–340 (2008)

    Article  Google Scholar 

  32. Ramilan, T., Scrimgeour, F., Marsh, D.: Analysis of environmental and economic efficiency using a farm population micro-simulation model. Math. Comput. Simul. 81(7), 1344–1352 (2011)

    Article  MathSciNet  Google Scholar 

  33. Peel, D., Berry, H.L., Schirmer, J.: Farm exit intention and wellbeing: a study of Australian farmers. J. Rural. Stud. 47, 41–51 (2016)

    Article  Google Scholar 

  34. Rao, M., Tanton, R., Vidyattama, Y.: Modelling the economic, social and ecological links in the Murray-Darling basin: a conceptual framework. Australas. J. Reg. Stud. 21(1), 80–102 (2015)

    Google Scholar 

  35. Saunders, P., Bradbury, B.: Monitoring trends in poverty and income distribution: data, methodology and measurement. Econ. Rec. 82(258), 341–364 (2006). https://doi.org/10.1111/j.1475-4932.2006.00344.x

    Article  Google Scholar 

  36. Schafer, J.L.: Multiple imputation: a primer. Stat. Methods Med. Res. 8(1), 3–15 (1999)

    Article  MathSciNet  Google Scholar 

  37. Schirmer, J., Berry, H.: People and Place in Australia: The 2013 Regional Wellbeing Survey. University of Canberra, Canberra (2014)

    Google Scholar 

  38. Shrestha, S., Hennessy, T., Hynes, S.: The effect of decoupling on farming in Ireland : a regional analysis. Ir. J. Agric. Food Res. 46, 1–13 (2007)

    Google Scholar 

  39. Shrive, F.M., Stuart, H., Quan, H., Ghali, W.A.: Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Med. Res. Methodol. 6(1), 57 (2006)

    Article  Google Scholar 

  40. Smith, D.M., Clarke, G.P., Harland, K.: Improving the synthetic data generation process in spatial microsimulation models. Environ Plan A. 41(5), 1251–1268 (2009)

    Article  Google Scholar 

  41. Simpson, L., Tranmer, M.: Combining sample and census data in small area estimates: iterative proportional fitting with standard software. Prof. Geogr. 57(2), 222–234 (2005). https://doi.org/10.1111/j.0033-0124.2005.00474.x

    Article  Google Scholar 

  42. Sutherland, H.: Static microsimulation Models in Europe: a Survey. Microsimulation Unit Discussion Paper No. MU9503, Department of Applied Economics, University of Cambridge, UK (1995)

    Google Scholar 

  43. Tanton, R.: Spatial microsimulation as a method for estimating different poverty rates in Australia. Popul. Space Place. 17(3), 222–235 (2011). https://doi.org/10.1002/psp.601

    Article  Google Scholar 

  44. Tanton, R., Vidyattama, Y.: Pushing it to the edge : extending generalised regression as a spatial microsimulation method. Int. J. Microsimul. 3(2), 23–33 (2010)

    Google Scholar 

  45. Tanton, R., Vidyattama, Y., Nepal, B., McNamara, J.: Small area estimation using a reweighting algorithm. J. R. Stat. Soc. A. Stat. Soc. 174(4), 931–951 (2011). https://doi.org/10.1111/j.1467-985X.2011.00690.x

    Article  MathSciNet  Google Scholar 

  46. van Leeuwen, E., Dekkers, J.: Determinants of off-farm income and its local patterns: a spatial microsimulation of Dutch farmers. J. Rural. Stud. 31, 55–66 (2013)

    Article  Google Scholar 

  47. Vanclay, F.: Social principles for agricultural extension to assist in the promotion of natural resource management. Aust. J. Exp. Agric. 44(3), 213–222 (2004)

    Article  Google Scholar 

  48. Vidyattama, Y., Cassells, R., Harding, A., Mcnamara, J.: Rich or poor in retirement? A small area analysis of Australian private superannuation savings in 2006 using spatial microsimulation. Reg. Stud. 47(5), 722–739 (2013)

    Article  Google Scholar 

  49. Vidyattama, Y., Tanton, R., Biddle, N.: Estimating small-area indigenous cultural participation from synthetic survey data. Environ. Plan. A. 47(5), 1211–1228 (2015). https://doi.org/10.1177/0308518X15592314

    Article  Google Scholar 

  50. Voas, D., Williamson, P.: An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Int. J. Popul. Geogr. 6, 349–366 (2000)

    Article  Google Scholar 

  51. White, I.R., Royston, P., Wood, A.M.: Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30(4), 377–399 (2011)

    Article  MathSciNet  Google Scholar 

  52. Williamson, P., Birkin, M., Rees, P.H.: The estimation of population microdata by using data from small area statistics and samples of anonymised records. Environ Plan A. 30(5), 785–816 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogi Vidyattama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidyattama, Y., Tanton, R. (2020). Using a Spatial Farm Microsimulation Model for Australia to Estimate the Impact of an External Shock on Farmer Incomes. In: Rahman, A. (eds) Statistics for Data Science and Policy Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-1735-8_21

Download citation

Publish with us

Policies and ethics