Using a Spatial Farm Microsimulation Model for Australia to Estimate the Impact of an External Shock on Farmer Incomes

  • Yogi VidyattamaEmail author
  • Robert Tanton
Conference paper


A greater uncertainty in climate conditions in Australia and external price shocks in commodity prices has posed a real question for communities on the impact of these external factors on farmers. Spatial microsimulation models are ideal for understanding the spatial impacts of various external shocks, including changes in commodity prices; changes in climate conditions; and changes in Government policy. This study demonstrates the building of a spatial microsimulation model to identify farmer financial stress in the Australian State of Victoria, and then shows how this model can be used to estimate the impact of an external shock such as a drop in the price of milk. The model is estimated for the Australian State of Victoria.


Microsimulation modelling Farmer wellbeing Agricultural policy 


  1. 1.
    ABS.: Agricultural Commodities, Australia, 2010–11, Cat. No. 7121.0. Australian Bureau of Statistics, Canberra (2012)Google Scholar
  2. 2.
    ABS.: Australian Statistical Geography Standard (ASGS): Volume 1 – Main Structure and Greater Capital City Statistical Areas, July 2016, Cat. No. 1270.0.55.001. Australian Bureau of Statistics, Canberra (2016)Google Scholar
  3. 3.
    Anderson, B.: Creating small area income deprivation estimates for Wales: spatial microsimulation modelling. Chimera Working Paper. 11, (2007)Google Scholar
  4. 4.
    Akande, O., Li, F., Reiter, J.: An empirical comparison of multiple imputation methods for categorical data. Am. Stat. 71(2), 162–170 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ballas, D., Clarke, G.P., Wiemers, E.: Building a dynamic spatial microsimulation model for Ireland. Popul. Space Place. 11(3), 157–172 (2005). CrossRefGoogle Scholar
  6. 6.
    Ballas, D., Clarke, G.P., Wiemers, E.: Spatial microsimulation for rural policy analysis in Ireland: the implications of CAP reforms for the national spatial strategy. J. Rural. Stud. 22(3), 367–378 (2006)CrossRefGoogle Scholar
  7. 7.
    Botterill, L.: Responding to farm poverty in Australia. Aust. J. Polit. Sci. 42(1), 33–46 (2007). CrossRefGoogle Scholar
  8. 8.
    Botterill, L.C., Chapman, B.: A revenue contingent loan instrument for agricultural credit with particular reference to drought relief. Aust. J. Labour Econ. 12(2), 181 (2009)Google Scholar
  9. 9.
    Buddelmeyer, H., Hérault, N., Kalb, G., de Jong, M.V.Z.: Linking a microsimulation model to a dynamic cge model: climate change mitigation policies and income distribution in Australia. International Journal of Microsimulation. 5(2), 40–58 (2012)Google Scholar
  10. 10.
    Cockburn, J. (2006). Trade liberalisation and poverty in Nepal: a computable general equilibrium micro-simulation analysis. In Globalisation and Poverty (pp. 189–212). RoutledgeGoogle Scholar
  11. 11.
    Edwards, K.L., Tanton, R.: Spatial Microsimulation: a Reference Guide for Users. Springer, London (2013)Google Scholar
  12. 12.
    Harding, A., Lloyd, R., Greenwell, H.: Financial Disadvantage in Australia 1990 to 2000: The Persistence of Poverty in a Decade of Growth. Canberra (2000)Google Scholar
  13. 13.
    Harding, A., Vidyattama, Y., Tanton, R.: Demographic change and the needs-based planning of government services: projecting small area populations using spatial microsimulation. J. Popul. Res. 28(2–3), (2011).
  14. 14.
    Hopkins, J. W., Hanson, K., Somwaru, A., & Burfisher, M. E. (2003). Allocation effects of policy reform: a micro-simulation of macro-model results for the United States. (No. 1225-2016-98637)Google Scholar
  15. 15.
    Hynes, S., Farrelly, N., Murphy, E., O’Donoghue, C.: Modelling habitat conservation and participation in agri-environmental schemes: a spatial microsimulation approach. Ecol. Econ. 66(2–3), 258–269 (2008)CrossRefGoogle Scholar
  16. 16.
    Hynes, S., O’Donoghue, C., Morrissey, K., Clarke, G.: A spatial micro-simulation analysis of methane emissions from Irish agriculture. Ecol. Complex. 6(2), 135–146 (2009). CrossRefGoogle Scholar
  17. 17.
    Iacus, S.M., Porro, G.: Missing data imputation, matching and other applications of random recursive partitioning. Computational statistics & data analysis. 52(2), 773–789 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Keeney, R. (2009). Transfer Efficiency and Distributional Impacts of US Farm Support: Evidence from a Macro–Micro SimulationGoogle Scholar
  19. 19.
    Kokic, P., Chambers, R., Beare, S.: Microsimulation of business performance. Int. Stat. Rev. 68(3), 259–275 (2000)CrossRefGoogle Scholar
  20. 20.
    Kruseman, G., Blokland, P.W., Bouma, F., Luesink, H., Mokveld, L., Vrolijk, H.: Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture. In presentation at the 107th EAAE Seminar “Modelling of Agricultural and Rural Development Policies”, vol. 29. Sevilla (2008, January)Google Scholar
  21. 21.
    Leyk, S., Nagle, N.N., Buttenfield, B.P.: Maximum entropy dasymetric modeling for demographic small area estimation. Geogr. Anal. 45(3), 285–306 (2013)CrossRefGoogle Scholar
  22. 22.
    Li, J., O’Donoghue, C., Dekkers, G.: Dynamic models. In: Handbook of Microsimulation Modelling, pp. 305–343. Bingley, Emerald (2014).
  23. 23.
    Lockhart, J., Donaghy, D., Gow, H.: Milk Price Cuts Reflect the Reality of Sweeping Changes in Global Dairy Market. (2016)
  24. 24.
    Lymer, S., Brown, L., Yap, M., Harding, A.: 2001 regional disability estimates for New South Wales, Australia, using spatial microsimulation. Appl. Spat. Anal. Policy. 1(2), 99–116 (2008)CrossRefGoogle Scholar
  25. 25.
    Merz, J.: Microsimulation—a survey of principles, developments and applications. Int. J. Forecast. 7(1), 77–104 (1991)CrossRefGoogle Scholar
  26. 26.
    Menon, M., Perali, F., Salvioni, C.: Microsimulation of the distributional impact of reformed farm support. International Conference Agricultural Policy Reform and the WTO: Where Are We Heading? Capri (Italy), June 23–26 (2003)Google Scholar
  27. 27.
    Miranti, R., McNamara, J., Tanton, R., Harding, A.: Poverty at the local level: national and small area poverty estimates by family type for Australia in 2006. Appl. Spat. Anal. Policy. 4(3), 145–171 (2011)CrossRefGoogle Scholar
  28. 28.
    Murphy, G., Hynes, S., Murphy, E., O’Donoghue, C., Green, S.: Assessing the compatibility of farmland biodiversity and habitats to the specifications of agri-environmental schemes using a multinomial logit approach. Ecol. Econ. 71, 111–121 (2011)CrossRefGoogle Scholar
  29. 29.
    Orcutt, G.H.: Simulation of economic systems. Am. Econ. Rev. 50(5), 894–907 (1960)Google Scholar
  30. 30.
    Nepal, B., Tanton, R., Harding, A.: Measuring housing stress: how much do definitions matter? Urban Policy Res. 28(2), 211–224 (2010)CrossRefGoogle Scholar
  31. 31.
    Procter, K.L., Clarke, G.P., Ransley, J.K., Cade, J.: Micro-level analysis of childhood obesity, diet, physical activity, residential socioeconomic and social capital variables: where are the obesogenic environments in Leeds? Area. 40(3), 323–340 (2008)CrossRefGoogle Scholar
  32. 32.
    Ramilan, T., Scrimgeour, F., Marsh, D.: Analysis of environmental and economic efficiency using a farm population micro-simulation model. Math. Comput. Simul. 81(7), 1344–1352 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Peel, D., Berry, H.L., Schirmer, J.: Farm exit intention and wellbeing: a study of Australian farmers. J. Rural. Stud. 47, 41–51 (2016)CrossRefGoogle Scholar
  34. 34.
    Rao, M., Tanton, R., Vidyattama, Y.: Modelling the economic, social and ecological links in the Murray-Darling basin: a conceptual framework. Australas. J. Reg. Stud. 21(1), 80–102 (2015)Google Scholar
  35. 35.
    Saunders, P., Bradbury, B.: Monitoring trends in poverty and income distribution: data, methodology and measurement. Econ. Rec. 82(258), 341–364 (2006). CrossRefGoogle Scholar
  36. 36.
    Schafer, J.L.: Multiple imputation: a primer. Stat. Methods Med. Res. 8(1), 3–15 (1999)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Schirmer, J., Berry, H.: People and Place in Australia: The 2013 Regional Wellbeing Survey. University of Canberra, Canberra (2014)Google Scholar
  38. 38.
    Shrestha, S., Hennessy, T., Hynes, S.: The effect of decoupling on farming in Ireland : a regional analysis. Ir. J. Agric. Food Res. 46, 1–13 (2007)Google Scholar
  39. 39.
    Shrive, F.M., Stuart, H., Quan, H., Ghali, W.A.: Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Med. Res. Methodol. 6(1), 57 (2006)CrossRefGoogle Scholar
  40. 40.
    Smith, D.M., Clarke, G.P., Harland, K.: Improving the synthetic data generation process in spatial microsimulation models. Environ Plan A. 41(5), 1251–1268 (2009)CrossRefGoogle Scholar
  41. 41.
    Simpson, L., Tranmer, M.: Combining sample and census data in small area estimates: iterative proportional fitting with standard software. Prof. Geogr. 57(2), 222–234 (2005). CrossRefGoogle Scholar
  42. 42.
    Sutherland, H.: Static microsimulation Models in Europe: a Survey. Microsimulation Unit Discussion Paper No. MU9503, Department of Applied Economics, University of Cambridge, UK (1995)Google Scholar
  43. 43.
    Tanton, R.: Spatial microsimulation as a method for estimating different poverty rates in Australia. Popul. Space Place. 17(3), 222–235 (2011). CrossRefGoogle Scholar
  44. 44.
    Tanton, R., Vidyattama, Y.: Pushing it to the edge : extending generalised regression as a spatial microsimulation method. Int. J. Microsimul. 3(2), 23–33 (2010)Google Scholar
  45. 45.
    Tanton, R., Vidyattama, Y., Nepal, B., McNamara, J.: Small area estimation using a reweighting algorithm. J. R. Stat. Soc. A. Stat. Soc. 174(4), 931–951 (2011). MathSciNetCrossRefGoogle Scholar
  46. 46.
    van Leeuwen, E., Dekkers, J.: Determinants of off-farm income and its local patterns: a spatial microsimulation of Dutch farmers. J. Rural. Stud. 31, 55–66 (2013)CrossRefGoogle Scholar
  47. 47.
    Vanclay, F.: Social principles for agricultural extension to assist in the promotion of natural resource management. Aust. J. Exp. Agric. 44(3), 213–222 (2004)CrossRefGoogle Scholar
  48. 48.
    Vidyattama, Y., Cassells, R., Harding, A., Mcnamara, J.: Rich or poor in retirement? A small area analysis of Australian private superannuation savings in 2006 using spatial microsimulation. Reg. Stud. 47(5), 722–739 (2013)CrossRefGoogle Scholar
  49. 49.
    Vidyattama, Y., Tanton, R., Biddle, N.: Estimating small-area indigenous cultural participation from synthetic survey data. Environ. Plan. A. 47(5), 1211–1228 (2015). CrossRefGoogle Scholar
  50. 50.
    Voas, D., Williamson, P.: An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Int. J. Popul. Geogr. 6, 349–366 (2000)CrossRefGoogle Scholar
  51. 51.
    White, I.R., Royston, P., Wood, A.M.: Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30(4), 377–399 (2011)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Williamson, P., Birkin, M., Rees, P.H.: The estimation of population microdata by using data from small area statistics and samples of anonymised records. Environ Plan A. 30(5), 785–816 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Centre for Social and Economic Modelling (NATSEM)University of CanberraCanberraAustralia

Personalised recommendations