Skip to main content

Evaluating Faster-RCNN and YOLOv3 for Target Detection in Multi-sensor Data

  • Conference paper
  • First Online:
Statistics for Data Science and Policy Analysis

Abstract

Intelligent and autonomous systems like driverless cars are seeking the capability to navigate around at any time of the day and night. Therefore, it is vital to have the capability to reliably detect objects to predict any situation. One way to capture such imagery is through multi-sensor data like FLIR (Forward Looking Infrared) and visible cameras. Contemporary deep object detectors like YOLOv3 (You Look Once Only) (Redmon and Farhadi, Yolov3: an incremental improvement, arXiv) and Faster-RCNN (Faster Region based Convolutional Neural Networks) (Girshick Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1440–1448, 2015) are well-trained for daytime images. However, no performance evaluation is available against multi-sensor data. In this paper, we argue that diverse contextual multi-sensor data and transform learning can optimise the performance of deep object detectors to detect objects around the clock. We explore how contextual multi-sensor data can play a pivotal role in modelling and recognizing objects especially at night. For this purpose, we have proposed the use of contextual data fusion on available training data before training these deep detectors.We show that such enhancement significantly increases the performance of deep learning based object detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Vis. Media 5, 1–34 (2014)

    Google Scholar 

  2. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  3. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: a survey. arXiv preprint arXiv:1809.02165

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  5. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  6. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)

    Google Scholar 

  7. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  8. Anwaar, H., Iqbal, G., Murshed, M.: Automated multi-sensor color video fusion for nighttime video surveillance. In: IEEE Symposium on Computers and Communications (ISCC), pp. 529–534 (2010)

    Google Scholar 

  9. Anwaar, H., Iqbal, G., Murshed, M.: On dynamic scene geometry for view-invariant action matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3305–3312 (2011)

    Google Scholar 

  10. Ulhaq, A.: Action recognition in the dark via deep representation learning. In: 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), pp. 131–136. IEEE (2018)

    Google Scholar 

  11. Toet, A., de Jong, M.J., Hogervorst, M.A., Hooge, I.T.: Perceptual evaluation of colorized nighttime imagery. In: IS&T/SPIE Electronic Imaging, pp. 901412 (2014)

    Google Scholar 

  12. Ulhaq, A., Yin, X., He, J., Zhang, Y.: Face: fully automated context enhancement for night-time video sequences. J. Vis. Commun. Image Represent. 40, 682–693 (2016)

    Article  Google Scholar 

  13. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: Yolov3: An Incremental Improvement (2018). arXiv preprint arXiv:1804.02767

    Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  16. Yuan, Z.-W., Zhang, J.: Feature extraction and image retrieval based on alexnet. In: Eighth International Conference on Digital Image Processing (ICDIP 2016). International Society for Optics and Photonics, vol. 10033, pp. 100330E (2016)

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Lewis, J., Nikolov, S., Loza, A., Canga, E.F., Cvejic, N., Li, J., Cardinali, A., Canagarajah, C., Bull, D., Riley, T., et al.: The Eden project multi-sensor data set. The Online Resource for Research in Image Fusion (ImageFusion.org)

    Google Scholar 

  20. Ha, Q., Watanabe, K., Karasawa, T., Ushiku, Y., Harada, T.: Mfnet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5108–5115. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulhaq, A., Khan, A., Robinson, R. (2020). Evaluating Faster-RCNN and YOLOv3 for Target Detection in Multi-sensor Data. In: Rahman, A. (eds) Statistics for Data Science and Policy Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-1735-8_14

Download citation

Publish with us

Policies and ethics