Skip to main content

Abstract

Any microorganism which is capable of bringing illness in a host organism is termed as pathogen. Pathogens manipulate the cellular mechanisms of host organisms via pathogen–host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. This chapter is restricted to human viral pathogens, though plant and animal pathogens are also extensive in nature. When a pathogenic microorganism (especially virus) infects the human host, a fight develops between the host’s innate and adaptive immune systems and the pathogen’s assorted virulence mechanisms. The battle results in establishing how well the host survives and recovers. Failures in vaccine production and inadequacy in antiviral therapeutics are the recent challenges what virology researchers facing now. For years, the discipline of virology has been excessively concentrated on pathogens than host response. We are aware that host response is the determinant factor for the eventual development of the pathological outcome of the infection. Viral pandemic and epidemic infections like acquired immunodeficiency syndrome (AIDS), swine flu, dengue, and other chronic and acute infections are posing a huge threat. We are in a need to develop biological approaches with sophisticated computational strategies by understanding the components, interactions, and dynamics of a biological system in a comprehensive, quantitative, and integrative fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizon S, Murall C, Bravo I (2017) Why human papillomavirus acute infections matter. Viruses 9:293

    Article  PubMed Central  Google Scholar 

  • Baron EJ, Chang RS, Howard DH et al (1994) A short course. J Med Microbiol 1057(QR 46):M45

    Google Scholar 

  • Beltran PM, Cook KC, Cristea IM (2017) Exploring and exploiting proteome organization during viral infection. J Virol 91:00268–00217

    Google Scholar 

  • Birungi G, Chen SM, Loy BP et al (2010) Metabolomics approach for investigation of effects of dengue virus infection using the EA. hy926 cell line. J Proteome Res 9:6523–6534

    Article  CAS  PubMed  Google Scholar 

  • Breitbart M (2012) Marine viruses- truth or dare. Annu Rev Mar Sci 4:425–448

    Article  Google Scholar 

  • Buchmeier MJ (2007) Arenaviridae the viruses and their replication. Field Virol 2:1792–1827

    Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848

    Article  CAS  PubMed  Google Scholar 

  • Calderone A, Castagnoli L, Cesareni G (2013) Mentha: A resource for browsing integrated protein-interaction networks. Nature Methods 10(8):690–691

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski LA (1999) Host-pathogen interactions-redefining the basic concepts of virulence and pathogenicity. Nat Immunol 67:3703–3713

    CAS  Google Scholar 

  • Converse SE, Cox JS (2005) A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol 187:1238–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado T, Sanchez EL, Camarda R et al (2012) Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog 8:1002866

    Article  CAS  Google Scholar 

  • Dogra P, Butner JD, Chuang YL et al (2019) Mathematical modeling in cancer nanomedicine-a review. Biomed Microdevices 21:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Eagle H, Habel K (1956) The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell. J Exp Med 104:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenreich W, Rudel T, Heesemann J, Goebel W (2019) How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol 9:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay N, Panté N (2015) Nuclear entry of DNA viruses. Front Microbiol 6:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Fermin G, Tennant P (2018) Host–Virus interactions-battles between viruses and their hosts. Nucleic Acids 12:245

    Google Scholar 

  • Figard PH, Levine AS (1966) Incorporation of labeled precursors into lipids of tumors induced by Rous sarcoma virus. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 125(3):428–434

    Article  CAS  Google Scholar 

  • Fontaine KA, Camarda R, Lagunoff M (2014) Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88:4366–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine KA, Sanchez EL, Camarda R et al (2015) Dengue virus induces and requires glycolysis for optimal replication. J Virol 89:2358–2366

    Article  CAS  PubMed  Google Scholar 

  • Foo KY, Chee HY (2015) Interaction between flavivirus and cytoskeleton during virus replication. Biomed Res Int 2015:427814

    Article  PubMed  PubMed Central  Google Scholar 

  • Goff SP (2007) Retroviridae-the retroviruses and their replication. J Virol 2:1999–2069

    Google Scholar 

  • Guirimand T, Delmotte S, Navratil V (2014) VirHostNet 2.0- surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43:583–587

    Article  CAS  Google Scholar 

  • Heaton NS, Randall G (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbaugh JA, Montero C, Schinazi RF et al (2016) Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology 491:106–114

    Article  CAS  PubMed  Google Scholar 

  • Hsu PW, Lin LZ, Hsu SD (2006) ViTa- prediction of host micro RNAs targets on viruses. Nucleic Acids Res 35:381–385

    Article  Google Scholar 

  • Hulo C, De Castro E, Masson P et al (2010) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:576–582

    Article  CAS  Google Scholar 

  • Imperiale MJ, Major EO (2007) Polyomaviruses. J Virol 5:2263–2298

    Google Scholar 

  • Inoue T, Tsai B (2013) How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 5:013250

    Article  CAS  Google Scholar 

  • Islinger M, Godinho LF, Costello J et al (2015) The different facets of organelle interplay—an overview of organelle interactions. Front Cell Dev Biol 3:56

    PubMed  PubMed Central  Google Scholar 

  • Kane M, Golovkina T (2010) Common threads in persistent viral infections. J Virol 84:4116–4123

    Article  CAS  PubMed  Google Scholar 

  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S et al (2009) Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res 8:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Kayser FH, Bienz KA, Eckert J, Zinkernagel RM (2004) Medical microbiology, 1st edn. Georg Thieme Verlag, Stuttgart., ISBN-13: 978-1588902450, p 724

    Google Scholar 

  • Khan M, Syed GH, Kim SJ, Siddiqui A (2015) Mitochondrial dynamics and viral infections-a close nexus. Biochim Biophys Acta 1853:2822–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Dolja VV, Krupovic M (2015) Origins and evolution of viruses of eukaryotes-the ultimate modularity. J Virol 479:2–5

    Article  CAS  Google Scholar 

  • Krishnakumar V, Durairajan SS, Alagarasu K et al (2019) Recent updates on mouse models for human immunodeficiency, influenza, and dengue viral infections. Viruses 11:252

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar S, Lingaraja Jena SD et al (2013) hpvPDB- an online proteome reserve for human papillomavirus. Genomics Inform 11:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafon M (2009) Latent viral infections of the nervous system-role of the host immune response. Rev Neurol 165:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Levy HB, Baron S (1956) Some metabolic effects of poliomyelitis virus on tissue culture. Nature 178:1230

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York

    Google Scholar 

  • Martelli GP, Russo M (1985) Virus-host relationships. In: The plant viruses. Springer, Boston, pp 163–205

    Chapter  Google Scholar 

  • Martinez-Martin N (2017) Technologies for proteome-wide discovery of extracellular host-pathogen interactions. J Immunol Res 2017:2197615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason S, Devincenzo J, Toovey S et al (2018) Comparison of antiviral resistance across acute and chronic viral infections. Antivir Res 158:103–112

    Article  CAS  PubMed  Google Scholar 

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833

    Article  CAS  PubMed  Google Scholar 

  • Munger J, Bennett BD, Parikh A et al (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PR, Rosenthal KS, Pfaller MA (2015) Med Microbiol. Mosby, Philadelphia

    Google Scholar 

  • Navratil V, de Chassey B, Meyniel L et al (2008) VirHostNet-a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks. Nucleic Acids Res 37:661–668

    Article  CAS  Google Scholar 

  • Purdy JG (2019) Pathways to understanding virus-host metabolism interactions. Curr Clin Microbiol Rep 6:34–43

    Article  Google Scholar 

  • Rabinowitz JD, Purdy JG, Vastag L et al (2011) Metabolomics in drug target discovery. Cold Spring Harb Symp Quant Biol. 76:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawls WE, Chan MA, Gee SR (1981) Mechanisms of persistence in arenavirus infections: a brief review. Can J Microbiol 27:568–574

    Article  CAS  PubMed  Google Scholar 

  • Roitt IM (1974) Essential immunology, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Roossinck MJ (2010) Lifestyles of plant viruses. Philos Trans R Soc Lond Ser B Biol Sci 365:1899–1905

    Article  Google Scholar 

  • Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479:609–618

    Google Scholar 

  • Sanchez EL, Pulliam TH, Dimaio TA et al (2017) Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s sarcoma-associated herpesvirus lytic replication. J Virol 91:02237–02216

    Article  Google Scholar 

  • Schelhaas M (2010) Come in and take your coat off–how host cells provide endocytosis for virus entry. Cell Microbiol 12:1378–1388

    Article  CAS  PubMed  Google Scholar 

  • Southwood D, Ranganathan S (2016) Host-pathogen interactions. In: Encyclopedia of Bioinformatics and Computational Biology, vol 3. Elsevier, Amsterdam, pp 103–112

    Google Scholar 

  • Stebbing J, Gazzard B (2003) Virus host interactions. Obstet Gynecol 5:103–106

    Article  Google Scholar 

  • Steck TL, Kaufman S, Bader JP (1968) Glycolysis in chick embryo cell cultures transformed by Rous sarcoma virus. Cancer Res 28:1611–1619

    CAS  PubMed  Google Scholar 

  • Stevceva L (2015) Latent viral infections in humans. In: Vaccines for latent viral infections. Bentham Science, Sharjah, p 3

    Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801

    Article  CAS  PubMed  Google Scholar 

  • Tennant P, Fermin G, Foster JE (2018) Viruses- molecular biology, host interactions, and applications to biotechnology. Academic Press, New York

    Google Scholar 

  • Urban M, Pant R, Raghunath A et al (2014) The pathogen-host interactions database (PHI-base)-additions and future developments. J Nucleic Acids Res 43:D645–D655

    Article  CAS  Google Scholar 

  • Vastag L, Koyuncu E, Grady SL et al (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7:1002124

    Article  CAS  Google Scholar 

  • Venuta S, Rubin H (1973) Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts. Proc Natl Acad Sci 70:653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Zhang JL, Chen W et al (2010) Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 4:809

    Article  CAS  Google Scholar 

  • Weissenhorn W, Poudevigne E, Effantin G et al (2013) How to get out-ssRNA enveloped viruses and membrane fission. J Virol 3:159–167

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnakumar, V., Kannan, M. (2020). Microbial Pathogenesis: Virus Pathogen–Host Interactions. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_2

Download citation

Publish with us

Policies and ethics