Skip to main content

Abstract

Antibiotic resistance among the microorganisms is one of the major concerns in the field of infectious biology. With the discovery of advanced antibiotics, the microorganisms are also combating back by upgrading their resistance mechanisms. The antibiotic resistance mechanism in different bacteria not only enhances the virulence but also increases the mortality rate. In recent times, the phenomenon of antibiotic resistance is increasing in the microorganisms such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus spp., which can cause higher degree of health adversity, and the list will continue growing with the passing time. One such example is the Vibrio cholerae, a gram-negative bacterium belonging to family Vibrionaceae is responsible for causing the disease cholera which is characterized by profuse rice watery diarrhea. Cholera organism after reaching the upper small intestine adheres, colonizes, multiplies, and secretes cholera toxin. CT consists of five bindings (B) subunits and one active (A) subunit. The B subunits bind to the GM1 ganglioside receptors in the small-intestinal mucosa, and the A subunit enters into the cell where it activates adenylate cyclase. This leads to an up rise in cyclic AMP level, and an increase in chloride secretion and inhibition of neutral sodium chloride absorption, which in turn leads to a massive outpouring of fluid into the small intestine, thus causing severe watery diarrhea. The primary treatment for cholera is rehydration therapy. Antibiotic therapy shortens the duration of infection and adversity of the disease. However, with the increased incidenceĀ of drug resistance in V. cholerae strains, the treatment of infection became more challenging day by day. Antibiotic resistance mechanisms in V. cholerae include the expulsion of drugs via efflux pumps, SXT elements, conjugative plasmids, and sometimes random chromosomal mutations. In this chapter, we are describing different mechanism of antibiotic resistance and pathogenicity keeping V. cholerae in highlight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Erratum for Abisado et al., ā€œbacterial quorum sensing and microbial community interactionsā€. MBio 9(5):e01749ā€“e01718

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Agustiandari H, Lubelski J, Kuipers OP, Driessen AJ (2008) LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol 190(2):759ā€“763

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ahmed AM, Shinoda S, Shimamoto T (2005) A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol Lett 242(2):241ā€“247

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Alvarez-Ortega C, Olivares J, MartĆ­nez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol 4:7

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Amaral L, Martins A, Spengler G, Molnar J (2014) Efflux pumps of gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 4:168

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Andersen J, He G-X, Kakarla P, KC R, Kumar S, Lakra W, Mukherjee M, Ranaweera I, Shrestha U, Tran T (2015) Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12(2):1487ā€“1547

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Antonova ES, Hammer BK (2011) Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol Lett 322(1):68ā€“76

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D (2014) Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus. FEMS Microbiol Lett 355(1):61ā€“70

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arthur M, Depardieu F, Gerbaud G, Galimand M, Leclercq R, Courvalin P (1997) The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol 179(1):97ā€“106

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Baptista M, Depardieu F, Reynolds P, Courvalin P, Arthur M (1997) Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol 25(1):93ā€“105

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bay DC, Rommens KL, Turner RJ (2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778(9):1814ā€“1838

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bay DC, Stremick CA, Slipski CJ, Turner RJ (2017) Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 168(3):208ā€“221

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bay DC, Turner RJ (2009) Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 9(1):140

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, KekulĆ© AS, Werner G, Layer F (2015) Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother 70(6):1630ā€“1638

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76(8):3595ā€“3605

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X et al (2011) ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40(database issue):D621ā€“D626

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bƶltner D, MacMahon C, Pembroke JT, Strike P, Osborn AM (2002) R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol 184(18):5158-5169.

    Google ScholarĀ 

  • Bolla JR, Su C-C, Do SV, Radhakrishnan A, Kumar N, Long F, Chou T-H, Delmar JA, Lei H-T, Rajashankar KR (2014) Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS One 9(6):e97903

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, Mchaourab HS (2007) Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol 5(10):e271

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Braibant M, Guilloteau L, Zygmunt MS (2002) Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother 46(9):3050ā€“3053

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31(1):394ā€“395

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Burrus V, Waldor MK (2003) Control of SXT integration and excision. J Bacteriol 185(17):5045-5054.

    Google ScholarĀ 

  • Bujard H, Gossen M, Hillen W, Helbl V, Schnappinger D (1996) Tetracycline regulated transcriptional modulators with altered DNA binding specificities. Google Patents

    Google ScholarĀ 

  • Burrus V, Quezada-Calvillo R, Marrero J, Waldor MK (2006) SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol 72(4):3054ā€“3057

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bush K (2012) Antimicrobial agents targeting bacterial cell walls and cell membranes. Rev Sci Tech 31(1):43ā€“56

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Caddick JM, Hilton AC, Rollason J, Lambert PA, Worthington T, Elliott TS (2005) Molecular analysis of methicillin-resistant Staphylococcus aureus reveals an absence of plasmid DNA in multidrug-resistant isolates. FEMS Immunol Med Microbiol 44(3):297ā€“302

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • CĆ”mara M, Hardman A, Williams P, Milton D (2002) Quorum sensing in Vibrio cholerae. Nat Genet 32(2):217

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R (2002) Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 46(1):125ā€“131

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Carraro N, Matteau D, Luo P, Rodrigue S, Burrus V (2014) The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet 10(10):e1004714.

    Google ScholarĀ 

  • Ceccarelli D, Daccord A, RenĆ© M, Burrus V (2008) Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol 190(15):5328-5338.

    Google ScholarĀ 

  • Chang G (2003) Multidrug resistance ABC transporters. FEBS Lett 555(1):102ā€“105

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chaudhary P, Kumar R, Verma AK, Singh D, Yadav V, Chhillar AK, Sharma G, Chandra R (2006) Synthesis and antimicrobial activity of N-alkyl and N-aryl piperazine derivatives. Bioorg Med Chem 14(6):1819ā€“1826

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232ā€“260

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Colwell RR (2004) Infectious disease and environment: cholera as a paradigm for waterborne disease. Int Microbiol 7(4):285ā€“289

    PubMedĀ  Google ScholarĀ 

  • Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003a) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47(12):3675ā€“3681

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH (2003b) Mechanism of Tet (O)-mediated tetracycline resistance. EMBO J 22(4):945ā€“953

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Crouzet M, Le Senechal C, Brƶzel VS, Costaglioli P, Barthe C, Bonneu M, Garbay B, Vilain S (2014) Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 14(1):253

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Davey ME, Oā€™toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847ā€“867

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317ā€“364

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dalsgaard A, Forslund A, Serichantalergs O, Sandvang D (2000) Distribution and content of Class 1 integrons in different Vibrio cholerae O-serotype strains isolated in Thailand. Antimicrob Agents Chemother 44:1315-1321.

    Google ScholarĀ 

  • Davies JP, Chen FW, Ioannou YA (2000) Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290(5500):2295ā€“2298

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davis MA, Besser TE, Orfe LH, Baker KN, Lanier AS, Broschat SL, New D, Call DR (2011) Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli isolates from calves in management settings with high and low antibiotic use. Appl Environ Microbiol 77(10):3293ā€“3299

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dawson RJ, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65(2):250ā€“257

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Stasio E, Moazed D, Noller H, Dahlberg A (1989) Mutations in 16S ribosomal RNA disrupt antibioticā€“RNA interactions. EMBO J 8(4):1213ā€“1216

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Deng Y, Sun C, Hunt DK, Fyfe C, Chen C-L, Grossman TH, Sutcliffe JA, Xiao X-Y (2017) Heterocyclyl tetracyclines. 1. 7-Trifluoromethyl-8-pyrrolidinyltetracyclines: potent, broad spectrum antibacterial agents with enhanced activity against Pseudomonas aeruginosa. J Med Chem 60(6):2498ā€“2512

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dong J, Yang G, Mchaourab HS (2005) Structural basis of energy transduction in the transport cycle of MsbA. Science 308(5724):1023ā€“1028

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dong Y-H, Wang L-H, Zhang L-H (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc B Biol Sci 362(1483):1201ā€“1211

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dong Y-H, Zhang L-H (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43(1):101ā€“109

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Džidić S, Å uÅ”ković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1):11ā€“21

    Google ScholarĀ 

  • Edward WY, Aires JR, Nikaido H (2003) AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 185(19):5657ā€“5664

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Elkins CA, Nikaido H (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol 184(23):6490ā€“6498

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Faloon P, Jewett I, Youngsaye W, Bennion M, Ng W-L, Hurley A, Lewis TA, Edwankar RV, Le H, Mosher CM (2014) Discovery of ML366, an inhibitor of Vibrio cholerae quorum sensing acting via the LuxO response regulator. In: Probe reports from the NIH molecular libraries program [internet]. National Center for Biotechnology Information, Bethesda

    Google ScholarĀ 

  • Faron ML, Ledeboer NA, Buchan BW (2016) Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant enterococcus in the health care setting. J Clin Microbiol 54(10):2436ā€“2447

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Feeley JC (1965) Classification of Vibrio cholerae (Vibrio comma), including El Tor vibrios, by infrasubspecific characteristics. J Bacteriol 89(3):665ā€“670

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fluit AC, Schmitz FJ (2004) Resistance integrons and super integrons. Eur Soc Clin Microbiol Infect Dis 10:272-288.

    Google ScholarĀ 

  • Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31(2):665ā€“677

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Garriss G, Burrus V (2013) Integrating conjugative elements of the SXT/R391 family. Bacterial integrative mobile genetic elements. J Bacteriol 195(9):217-234.

    Google ScholarĀ 

  • Garriss G, Waldor MK, Burrus V (2009) Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet 5(12):e1000775.

    Google ScholarĀ 

  • Gawron-Burke C, Clewell DB (1982) A transposon in Streptococcus faecalis with fertility properties. Nature 300(5889):281-284.

    Google ScholarĀ 

  • Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ, Kusters JG (2002) 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother 46(9):2996ā€“3000

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gomez JE, Kaufmann-Malaga BB, Wivagg CN, Kim PB, Silvis MR, Renedo N, Ioerger TR, Ahmad R, Livny J, Fishbein S (2017) Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment. eLife 6:e20420

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Greene NP, Kaplan E, Crow A, Koronakis V (2018) Antibiotic resistance mediated by the MacB ABC transporter family: a structural and functional perspective. Front Microbiol 9:950

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gutmann L, Billot-Klein D, Al-Obeid S, Klare I, Francoual S, Collatz E, Van Heijenoort J (1992) Inducible carboxypeptidase activity in vancomycin-resistant enterococci. Antimicrob Agents Chemother 36(1):77ā€“80

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101-104.

    Google ScholarĀ 

  • Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276ā€“301

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heithoff DM, Mahan MJ (2004) Vibrio cholerae biofilms: stuck between a rock and a hard place. J Bacteriol 186(15):4835ā€“4837

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450(7171):883

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Holmgren J (1973) Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect Immun 8:851-859.

    Google ScholarĀ 

  • Hochhut B, Waldor MK (1999) Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32(1):99ā€“110

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK (2001) Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45:2991ā€“3000

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • HĆ¼rlimann LM, Corradi V, Hohl M, Bloemberg GV, Tieleman DP, Seeger MA (2016) The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalis. Antimicrob Agents Chemother 60(9):5400ā€“5411

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM (2008) Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51(12):3353ā€“3356

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones PM, George AM (2009) Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 75(2):387ā€“396

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones PM, George AM (2013) Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 48(1):39ā€“50

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jung SA, Chapman CA, Ng W-L (2015) Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog 11(4):e1004837

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jung SA, Hawver LA, Ng W-L (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet 62(2):255ā€“260

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaper JB, Morris JG, Levine MM (1995) Cholera. Clin Microbiol Rev 8(1):48ā€“86

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57(4):1064ā€“1073

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim BS, Jang SY, Bang Y-J, Hwang J, Koo Y, Jang KK, Lim D, Kim MH, Choi SH (2018) QStatin, a selective inhibitor of quorum sensing in Vibrio species. MBio 9(1):e02262ā€“e02217

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kim SH, Chang AB, Saier MH Jr (2004) Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology 150(8):2493ā€“2495

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60(4):397ā€“407

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kolbusz MA, Slotboom DJ, Lolkema JS (2012) Role of individual positive charges in the membrane orientation and activity of transporters of the small multidrug resistance family. Biochemistry 51(44):8867ā€“8876

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumar S, He G, Kakarla P, Shrestha U, KC R, Ranaweera I, Mark Willmon T, R Barr S, J Hernandez A, F Varela M (2016) Bacterial multidrug efflux pumps of the major facilitator superfamily as targets for modulation. Infect Disord Drug Targets 16(1):28ā€“43

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar S, Mukherjee MM, Varela MF (2013) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol 2013:204141

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumar S, Varela MF (2012) Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 13(4):4484ā€“4495

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lai MH, Kirsch DR (1996) Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium. Antimicrob Agents Chemother 40(7):1645ā€“1648

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26ā€“41

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58(4):1186ā€“1202

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lewenza S, Visser MB, Sokol PA (2002) Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 48(8):707ā€“716

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li W, Atkinson GC, Thakor NS, Allas Ɯ, Lu C-c, Chan K-Y, Tenson T, Schulten K, Wilson KS, Hauryliuk V (2013) Mechanism of tetracycline resistance by ribosomal protection protein Tet (O). Nat Commun 4:1477

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria. Drugs 69(12):1555ā€“1623

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li X-Z, PlĆ©siat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev 28(2):337ā€“418

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Limburg E, Gahlmann R, Kroll HP, Beyer D (2004) Ribosomal alterations contribute to bacterial resistance against the dipeptide antibiotic TAN 1057. Antimicrob Agents Chemother 48(2):619ā€“622. https://doi.org/10.1128/AAC.48.2.619-622.2004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L (2015) Mechanisms of antibiotic resistance. Front Microbiol 6:34

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23(6):487

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56(2):603ā€“612

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lorch M, Lehner I, Siarheyeva A, Basting D, Pfleger N, Manolikas T, Glaubitz C (2005) NMR and fluorescence spectroscopy approaches to secondary and primary active multidrug efflux pumps. Portland Press Limited, London

    BookĀ  Google ScholarĀ 

  • Lubelski J, Mazurkiewicz P, Van Merkerk R, Konings WN, Driessen AJ (2004) ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 279(33):34449ā€“34455

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Marcuk LM, Nikiforov VN, Scerbak JF et al (1971) Clinical studies of the use of bacteriophage in the treatment of cholera. Bull. World Health Organ 45:77-83.

    Google ScholarĀ 

  • Maheshwari M, Nelapati K, Kiranmayi B (2011) Vibrio cholerae-a review. Vet World 4(9):423

    ArticleĀ  Google ScholarĀ 

  • Mankin AS, Polacek N (2008) SPARK: a new peptidyl transferase activity assay. In: New antibiotic targets. Springer, Totowa, pp 107ā€“116

    ChapterĀ  Google ScholarĀ 

  • Mao W, Warren MS, Black DS, Satou T, Murata T, Nishino T, Gotoh N, Lomovskaya O (2002) On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol Microbiol 46(3):889ā€“901

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Marvig RL, SĆøndergaard MS, DamkiƦr S, HĆøiby N, Johansen HK, Molin S, Jelsbak L (2012) Mutations in 23S rRNA confer resistance against azithromycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56(8):4519ā€“4521

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nature 4:608ā€“620

    CASĀ  Google ScholarĀ 

  • McCafferty DG, Lessard IA, Walsh CT (1997) Mutational analysis of potential zinc-binding residues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry 36(34):10498ā€“10505

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165ā€“199

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Misra R, Bavro VN (2009) Assembly and transport mechanism of tripartite drug efflux systems. Biochim Biophys Acta 1794(5):817ā€“825

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Miyamae S, Ueda O, Yoshimura F, Hwang J, Tanaka Y, Nikaido H (2001) A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 45(12):3341ā€“3346

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mohapatra H, Mohapatra SS, Mantri CK, Colwell RR, Singh DV (2008) Vibrio cholerae non-o1, non-o139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intsxt, dfr18 and aadA5 genes. Environ Microbiol 10(4):866ā€“873

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mohapatra SS, Mantri CK, Harapriya M, Colwell RR, Singh DV (2009) Analysis of clonally related environmental Vibrio cholerae O1 El Tor isolated before 1992 from Varanasi, India reveals origin of SXT-ICEs belonging to O139 and O1 serogroups. Environ Microbiol Rep 2(1):50ā€“57

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Morris JG Jr, Black RE (1985) Cholera and other vibrios in the United States. New Eng J Med 312:343-350.

    Google ScholarĀ 

  • Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Moussatova A, Kandt C, Oā€™Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 1778(9):1757ā€“1771

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2):VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419(6907):587

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7(10):693

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382ā€“388

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794(5):769ā€“781

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oā€™Driscoll T, Crank CW (2015) Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 8:217

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ogawa W, Minato Y, Dodan H, Onishi M, Tsuchiya T, Kuroda T (2015) Characterization of MATE-type multidrug efflux pumps from Klebsiella pneumoniae MGH78578. PLoS One 10(3):e0121619

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oli AN, Eze DE, Gugu TH, Ezeobi I, Maduagwu UN, Ihekwereme CP (2017) Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. Pan Afr Med J 27:66

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19(6):1167ā€“1175

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • PĆ©richon B, Courvalin P (2012) Glycopeptide resistance. In: Antibiotic discovery and development. Springer, New York, pp 515ā€“542

    ChapterĀ  Google ScholarĀ 

  • Pierce NF, Greenough W 3rd, Carpenter C Jr (1971) Vibrio cholerae enterotoxin and its mode of action. Bacteriol Rev 35(1):1

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3(11):870

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pohl PC, Klafke GM, Carvalho DD, Martins JR, Daffre S, da Silva Vaz I Jr, Masuda A (2011) ABC transporter efflux pumps: a defense mechanism against ivermectin in Rhipicephalus (Boophilus) microplus. Int J Parasitol 41(13ā€“14):1323ā€“1333

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672ā€“693

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Radchenko M, Symersky J, Nie R, Lu M (2015) Structural basis for the blockade of MATE multidrug efflux pumps. Nat Commun 6:7995

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151ā€“171

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile element. Microbiology 141:3015-3027.

    Google ScholarĀ 

  • Reeve SM, Lombardo MN, Anderson AC (2015) Understanding the structural mechanisms of antibiotic resistance sets the platform for new discovery. Future Microbiol 10(11):1727ā€“1733

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rice AJ, Park A, Pinkett HW (2014) Diversity in ABC transporters: type I, II and III importers. Crit Rev Biochem Mol Biol 49(5):426ā€“437

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sayamov RM (1963) Treatment and prophylaxis of cholera with bacteriophage. Bull World Health Organ 28:361ā€“367

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sapula SA, Brown MH (2016) Antimicrobial drug efflux pumps in Staphylococcus aureus. In: Efflux-mediated antimicrobial resistance in bacteria. Springer, Cham, pp 165ā€“195

    ChapterĀ  Google ScholarĀ 

  • Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V (2018) Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 9:2990

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sigmund CD, Ettayebi M, Morgan EA (1984) Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res 12(11):4653ā€“4664

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Silva AJ, Benitez JA (2016) Vibrio cholerae biofilms and cholera pathogenesis. PLoS Negl Trop Dis 10(2):e0004330

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Singh BR, Shoeb M, Sharma S, Naqvi A, Gupta VK, Singh BN (2017a) Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:93

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017b) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Slipski CJ, Zhanel GG, Bay DC (2018) Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J Membr Biol 251(1):15ā€“33

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57(9):4449ā€“4462

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Stokes HW, Oā€™Gorman DB, Recchia GD, Parsekhiam M, Hall RM (1997) Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol 26:731-745.

    Google ScholarĀ 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135ā€“138

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taylor RK, Miller VL, Furlong DB. Mekalanos JJ (1987) Use of phoA gene fusion to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84,:2833-2837.

    Google ScholarĀ 

  • Taylor DL, Bina XR, Bina JE (2012) Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus. PLoS One 7(5):e38208

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143(4):419ā€“435

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Teschler JK, Zamorano-SĆ”nchez D, Utada AS, Warner CJ, Wong GC, Linington RG, Yildiz FH (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13(5):255

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Toma C, Nakasone N, Song T, Iwanaga M (2005) Vibrio cholerae SXT element, Laos. Emerg Infect Dis 11(2):346

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • TouzĆ© T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Interactions underlying assembly of the Escherichia coli AcrABā€“TolC multidrug efflux system. Mol Microbiol 53(2):697ā€“706

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Van Heyningen WE, Carpenter CC, Pierce NF, Greenough WB III (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124(4):415ā€“418

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157ā€“4165.

    Google ScholarĀ 

  • Wang R, Yu D, Yue J, Kan B (2016) Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep 6:22733

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang W, Guo Q, Xu X, Sheng Z-k, Ye X, Wang M (2014) High-level tetracycline resistance mediated by efflux pumps Tet (A) and Tet (A)-1 with two start codons. J Med Microbiol 63(11):1454ā€“1459

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci 104(48):19005ā€“19010

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Webber M, Piddock L (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9ā€“11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D, Garriss G, DĆ©ry C, Burrus V, Waldor MK (2009) Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 5(12):e1000786

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yakushi T, Masuda K, Narita S-i, Matsuyama S-i, Tokuda H (2000) A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2(4):212

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang R, Cruz-Vera LR, Yanofsky C (2009) 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction. J Bacteriol 191(11):3445ā€“3450

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ (2008) The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 190(22):7357ā€“7366

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zahid MS, Udden SM, Faruque AS, Calderwood SB, Mekalanos JJ, Faruque SM (2008) Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 76:5266ā€“5273

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • ZĆ”rate SG, Morales P, Świderek K, Bolanos-Garcia VM, Bastida A (2019) A molecular modeling approach to identify novel inhibitors of the major facilitator superfamily of efflux pump transporters. Antibiotics 8(1):25

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zeng X, Lin J (2013) Beta-lactamase induction and cell wall metabolism in gram-negative bacteria. Front Microbiol 4:128

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zgurskaya HI (2002) Molecular analysis of efflux pump-based antibiotic resistance. Int J Med Microbiol 292(2):95ā€“105

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129-3134.

    Google ScholarĀ 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53(6):1563ā€“1571

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zolnerciks JK, Andress EJ, Nicolaou M, Linton KJ (2011) Structure of ABC transporters. Essays Biochem 50:43ā€“61

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This study was supported by fund contributed by the Department of Biotechnology, New Delhi to the Institute of Life Sciences, Bhubaneswar. SS is grateful to the Department of Science and Technology, New Delhi for providing Inspire Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durg Vijai Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S., Singh, D.V. (2020). Mechanism of Antibiotic Resistance and Pathogenicity of Vibrio cholerae. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_15

Download citation

Publish with us

Policies and ethics